Laser Micromachining of Transparent Dielectrics – Glass and Quartz Using Nano Short Pulsed Nd: YVO4 Laser Harmonics

By Shiva Gadag, Radovan  Kovacevic and Nilesh  Ramani

Introduction:
Glass, Quartz, and Silicon are made out of sand grains consisting of Silica, SiO2. Silicon and Glass are two basic building blocks which go hand-in-hand in the fabrication of optoelectronics and microelectronics device for MEMS and Biomedical microdevice applications such as charge coupled device, lab-on-a-chip, microsensors, microfluidic arrays, PV solar cells etc.

Miniaturization of microelectronics device is the driving force for laser micromachining of transparent dielectric Glass, Quartz and semiconductor Silicon materials. The dawn of digital era has diminished the dimensions of digital devices to micron and submicron scale resulting in shrinking the size of silicon and its dioxide dielectrics based digital devices much faster than the predicted ones by the Moore’s Law. In order to meet the digital demands of the 21st century digital revolution, laser micromachining or laser lithography is the only workhorse for alternative noncontact toolless techniques for digital device micro-manufacturing. Laser micromachining with shorter pulse widths result in accurate spatial resolution, precise depth control, enhanced edge quality and minimal peripheral damage. On the other hand conventional mechanical machining of transparent dielectrics and semiconductors is economically expensive and time consuming due to the hardness and brittleness of these materials. Nano short pulses and Ultrashort pulses are most commonly used for micromachining of transparent materials. The microprocessing of hard and brittle transparent materials is accomplished due thermal ablation by heating and evaporation of surface atoms in the former laser process. The nanosecond laser micromachining can often induce some undesirable heat affected zone surrounding the feature. Whereas in the latter process, the photoablation directly results in material vaporization by breaking the atomic bond by stripping electrons. The ultrashort micromachining is cold ablation with negligible heat affected zone due to no heat transfer to surrounding area. However, ultrashort micromachining techniques are quite expensive for industrial processing of glass such as cutting, drilling and marking for touch screen glass panel displays, microfluidic chambers, solar panels and microlens and optical components for photonics industries. As a result ultrashort processing is ideal only for applications demanding extreme precisions and excellent quality with negligible HAZ. However, a similar precision and quality of micromachining of transparent, hard and brittle materials can be achieved with nanosecond short pulsed lasers but with some traces of HAZ. The nano short pulsed lasers are relatively less expensive as compared to ultrashort lasers but far more efficient than the conventional machining methods. Hence the purpose of this article is to demonstrate the ease and efficacy, pros and cons of nanoshort pulsed lasers in micromachining of transparent and brittle materials like glass and quartz using Nd: YVO4 laser harmonics.

Experimental Technique:
The micromachining system (Figure-1) used nanosecond pulses (11ns duration) of Nd:YVO4, DPSS, Q-switched, HIPPO laser with four harmonics generating fundamental IR λ=1064nm, 2) Green λ=532nm, 3) UV λ=355nm and 4) UV λ=266nm respectively. The micromachining gantry consisted of X,Y,Z stage with laser mounted on the top tier was focused after 8X beam expansion by

Figure 1 – Laser micromachining work stage (left) and experimental setup (right) to measure laser power transmittance in glass.

telescopic lens and 90o reflections by 2 mirrors on incoming beam opening of HurryScan-II. The scanner focused beam to diffraction limited spot diameter, d=18 microns using 100mm telecentric lens and rastered beam as per CAD feature on substrate view field of 45mm. The substrates were 1mm Corning#0215 glass and 2mm photolithographic Quartz. PerkinElmer LAMBDA UV/Vis/NIR spectrophotometer was used to determine transmittance of glass for the range of wavelengths covering four laser harmonics. Glass being transparent (T>90%) IR and green wavelengths, the first two harmonics are not suitable for micromachining. The absorbance of UV wavelengths being A>75% , the third and fourth harmonics are better suited and fourth harmonic UV λ=266nm is most ideal among the four harmonics for micromachining of glass.

Defect Diagnosis of Dielectrics:

Figure 2 – The defect diagnosis of laser induced cracks showing A) regular cyclic cracks formed by primary mode-I type of precrack, B) regular periodic nodes of Butterfly type of cracks, C) Colony of Crack grain boundary surrounding the vias and D) concentric circles of dentritic debris of droplets of molten glass

Hence UV laser was used for micromachining of glass and quartz but the initial trials with high diode current resulted in various types of defects shown in the Figure 2. Systematic analysis of the defects formed in glass during micromarking and drilling revealed two types of crack formation, namely periodic and irregular type of cracks. The primary mode-I crack formed during marking of parallel lines with high diode current at high repetition rates, propagated as cyclic crack with a well-defined wavelength of propagation all along the length of the parallel lines on glass while micromarking, The cyclic micro cracks formed by primary mode-I crack either propagate as secondary sinusoidal crack with a wavelength of propagation proportional to the wavelength of laser harmonics. Alternatively primary precracks propogate as tertiary transverse cyclic cracks along the transverse line of laser marking with a wavelength equal to perpendicular distance between the parallel lines of laser marking. The second type of periodic cracks appeared as periodic nodes of cracks at regular interval resembling tiny butterfly. The irregular type of cracks formed crack grain boundary during laser drilling of microvias on glass due very high diode currents or pulsing frequency. The irregular cracks formed colonies of cracks surrounding the microvia. The expulsion of molten glass debris often solidified as concentric circles of dendritic glass droplets surrounding the circumference of the micro vias array formed on glass.

Optimum Power, Frequency and Wavelength of Laser:
Apart from the transmittance of various wavelengths in the glass, absorbance of a suitable wavelength and its response to average power and pulsing frequency of the laser is crucial for micromachining of the glass without any defects or cracks. To establish the power and frequency response to absorbance of the laser, average power transmittance characteristics of glass for the laser harmonics were determined using the setup shown in the Figure 1. The diode current of the diode pumped solid state laser is directly proportional to average power of laser harmonics. As the diode current increased from 1 to 100% , the average power laser harmonics linearly increased to 17.5W for IR and 8.5W for Green, 5W for UV λ=355nm and 2.5W for UV λ=266nm respectively. Since absorbance characteristics of laser to diode current and frequency of pulses being identical for all four harmonics, second harmonic green laser λ=532nm was chosen to study the power and frequency response to absorption of the laser.

Intensity, I0 of power incident, P0 on glass in air, I0 = P0/(pr2) and transmitted intensity, IT of power, PT through glass IT= PT/(pr2) were measured by thermopile sensor. Applying Beer-Lambert’s law due to high optical penetration of the glass, absorption coefficient of the laser in glass thickness, l was calculated using b =-ln(IT/I0)/l . Diode current and frequency response of laser absorption in Corning glass measurement (Figure 3) indicated optimal laser power for 60-70% diode current and frequency of 55 kHz for effective micromachining.

Figure 3 – Measurement of absorption coefficient of Corning glass as function of A) Diode Current and B) Pulsing Frequency (kHz) of HIPPO Laser.

Results:
Finally using the suitable wavelength (λ=266nm) and optimal energy (5-10 µJ) and frequency (50 kHz) of 11ns short pulsed UV laser, cracks were eliminated and defects were minimized in micromachining of glass. The process optimization enabled to get fine parallel lines of 17µm and arrays of microvia of 15µm diameter at 75µm pitch, as well as etching and scribing without any cracks on glass (Figure 4). This helped to make microchannels and microfluidic tubes in 2mm thick quartz using nanosecond pulsed UV laser.

Figure 4 – Optimization of laser parameters enabled crack-free micromachining of glass: A, B) Fine line marking, C) drilling of microvias, and D) etching and scribing of glass.

Conclusion:
An optimization of laser process parameters – wavelength, power and frequency nanosecond pulse laser crucial critical factor for micromachining of transparent dielectrics of glass and quartz with minimal HAZ, less defects and relatively free from flaws and cracks. The technical feasibility of the cost effective nanosecond pulsed lasers in microprocessing of transparent dielectrics is clearly established in this article.

Professor Radovan Kovacevic is with Dept. of Mechanical Engineering, Southern Methodist University, Dallas TX and Shiva Gadag is with ScanTech Lasers Pvt. Ltd. Nilesh Ramani is Director & CEO of Scantech Laser Pvt Ltd, India.

35th Annual ICALEO

Bridging the Gap Between Academia & Industry

By Debbie Sniderman

The 35th International Congress on Applications of Lasers & Electro-Optics (ICALEO®) took place at the Sheraton® San Diego Hotel and Marina this October, 2016. With a highly engaged group of attendees and a great mix of veterans in the field, students and new attendees, ICALEO met its goals of bridging the gap between academia and industry, highlighting new developments in laser technology, and providing a platform for global networking.

“This year’s ICALEO exceeded all expectations once again,” said Jim Naugle, Marketing Director of LIA. “The great location helped increase attendance from 2015. With 415 attendees from 20 different countries, with around 80 percent from academia and 20 percent from industry, you can see why this conference is so unique.”

Congress Technical Highlights
Congress General Chair Silke Pflueger put together unquestionably the best plenary talks ever delivered at an ICALEO conference so far.

Nina Lanza from Los Alamos National Laboratory linked all humanity together in her opening plenary talk about the laser riding around in a vehicle on Mars. Since 2012, the laser in the ChemCam instrument aboard the Mars Science Lab ‘Curiosity’ rover has brought Laser-Induced Breakdown Spectroscopy (LIBS) analysis capabilities and chemical analysis data back to Earth. Along with a Remote Micro Imaging camera, the ChemCam data has provided good signs for habitability of the planet. With its small 350-500 µm spot size, it is able to measure features up to 7 meters away from the rover and ablates material to perform depth sampling by pulsing, revealing “big results” that smectite clays are present underneath the red rocks on the surface of Mars and that dust all over the planet is hydrated. It is also showing the presence of methane, indicating that Mars is not a dead planet; it is active and full of surprises.

Next, Jim McBride from Ford Motor Company talked about the challenges of sensing on fully autonomous vehicles. Ford is developing a fleet of vehicles where a driver has no responsibility of driving, with the goal of having commercially available fully autonomous vehicles in 2021 and cost affordable vehicles in 2026. He explained the three types of sensors used on autonomous vehicles: Radar, cameras and Light Detection and Ranging (LiDAR) scanners. He showed videos of the Ford Fusion Hybrid research vehicle driving completely autonomously on a recent successful 125 mile highway test through the Arizona/California desert using only the LiDAR scanners to image surroundings in a 360 degree view around the car at all times.

McBride showed how 95-99 percent of autonomous driving can be done with input from LiDAR scanners alone. Reading what he calls the pavement’s unique fingerprint: manhole covers, lane markings, tar strips, cracks and all details in a road, localizing the vehicle, the road, and obstacles, centering it within a few cm on the road, tracking obstacles and avoiding collisions is simple for LiDAR. Its data is overlaid on top of high definition 3D maps with road data that has the rules of the road, crosswalks, road signs and other important features, to make sure the road is traversable, using prior knowledge to identify what’s coming ahead and difficult topologies. It has its own light source and isn’t susceptible to shadows and the sun, unlike monocular cameras. And it is much better at tracking other vehicles than with Radar alone, which is noisy. Redundancy helps filter out echoes from challenges such as snow or heavy rain that may obscure the ground plane. With real-time planning without GPS, the laser scanners calculate where to go. But, there are some areas where it doesn’t suffice.

Sensor fusion helps in challenging situations: high closing velocities on two-lane highways when it’s hard to see objects coming, adverse weather and lighting, snow obscuring optics preventing the laser from making it to the ground plane, road debris, and human-negotiated arrangements like four-way stops and merge ramps. In merge scenarios with line of sight issues, sensing has to look in 360 degrees. When turning left or accelerating on a highway on ramp, thousands of possible trajectories are calculated, looking back in time for decision making. But, when fusing LiDAR scanners with other sensors, each still sees only part of the picture.

Albert Lazzarini, Deputy Director of LIGO Laboratory at California Institute of Technology presented the exciting new results about black holes made from the first gravitational waves detected by LIGO. The system involves an extremely stable laser injected into a complex cavity of a Fabry-Perot interferometer with ultra-pure super-polished suspended mirrors coated with forty quarter-wave layers to have reflectivity better than five 9’s. Servo-controlled ground isolations systems stabilize, attenuate and filter out ground motion with input from seismometers, so the laser light that makes about 140 bounces per second is sensitive enough to be considered a transducer for gravitational waves at the output of the interferometer.

All LIGO science data is publicly available on the center’s open website, and since it came online, a total of three events have been observed that are bringing new information – that black holes in binary systems exist. Two identical signals were seen simultaneously by systems in two locations in eastern Washington State and near Baton Rouge in Louisiana. After correcting for differences in orientation and background noise and removing the few-second offset between the locations, it was determined that the gravitational wave signal seen here on Earth corresponded to events that occurred 1.4 billion years ago between two black holes of 29 and 36 solar masses respectively. Signals show how they behave when they interact and provide an estimate of where the event was located in the universe.

Laser Materials Processing (LMP) Conference Technical Highlights
The LMP Conference, chaired by Christoph Leyens from Fraunhofer IWS, brought together laser, manufacturing and materials science disciplines and presented talks on laser drilling, cladding, cutting, welding, additive manufacturing/3D printing and materials for lightweight construction.

A highlight of the lightweight construction talks was about carbon fiber reinforced plastics (CFRP), which are used in many industrial sectors. Sven Bluemel from Laser Zentrum in Germany presented information that will help optimize laser cutting processes in his talk Time Resolved Analysis of Nanosecond Pulsed Laser Processing of CFRP (LMP8-803). Bluemel synchronized a CMOS camera and strobe light with a fiber guided nanosecond pulsed laser to analyze the plasma plume during laser cutting of 3D CFRP parts with different processing parameters. Analysis of pictures of the cutting process and resulting plume showed how the plume varied with pulse energies and changed during processing so ablation thresholds and process boundaries could be set.

Ti6AL4V is the major industrial alloy used in aerospace, medical implants, automotive fuel nozzles and many other applications, and many talks and posters mentioned 3D printed devices using its power feedstock. Dirk Herzog from Hamburg University of Technology, Germany, spoke about how different powder feedstocks affect the quality of parts produced by laser melting or laser fusion in his talk Relationship between Powder Characteristics and Part Properties in Laser Beam Melting of Ti6AL4V and Implications on Quality (LAM1-705). His work characterized the three forms of Ti6AL4V powders IGA, PA and ICP, from several manufacturing sources by SEM, particle size distribution, chemical composition and flowability from five different methods that test static and dynamic states. He created laser beam melted parts and measured properties such as density, static strength, yield strength, ultimate tensile strength, elongation and Vickers hardness. He found that all three powders produced dense specimens and can be used, and he presented the differences between them and made recommendations.

Laser Microprocessing (LMF) Conference Technical Highlights
“2016 was another great year for the Microprocessing Conference,” said LMF Conference Chair Michelle Stock, from mlstock consulting. “We heard about applications as diverse as wearable electronics and writing skin by 3D printing cells with ultrafast lasers. We gained more insight into how to improve processing speed and precision with new beam delivery and beam shaping techniques.”

A highlight in the smart and wearable gadget area was Alan Conneeley’s invited talk Laser Micromachining of Contactless RF Antenna Modules for Payment Cards and Wearable Objects (LMF5-M501) involving work at the National University of Ireland in Galway. Conneely presented several successful applications of laser ablation for next generation contactless payment cards and flexible wearable devices. Antennas were formed from copper laminated epoxy tape on plastic and flexible substrates as well as on copper PCBs. Laser processing allowed much smaller resolution antenna features to be designed and fabricated compared to chemically etching copper. New antenna designs using this process have a higher density of turns in a given area enabling contactless cards and payment systems to meet design goals for Europay, MasterCard and Visa (EMV) industry standards.

Two talks on how lasers interact with transparent materials were another conference highlight. Thomas Hermann from Photonik-Zentrum Kaiserlautern, Germany spoke about a new laser technique to modify the surface of bulk glass in his talk Selective Glass Surface Modification with Picosecond Laser Pulses for Spatially Resolved Gloss Reduction (LMF4-M402). Specular gloss, sheen and haze are important in devices such as automotive headlamps and mobile screens. His work investigated how the surfaces change with single, double and more than two pulses per location, pulse energy, line distance and the influence of substructures. He demonstrated that glass with dramatic gloss reduction by direct laser structuring still had high transmission, and the process uses no chemicals, no masking, is fast and flexible, and leaves sharper features on the surface compared to chemical etching.

In another transparent material talk, Geoffrey Lott from Electro Scientific Industries in Portland, Oregon, covered Enhanced Drilling of Transparent Materials with Ultrashort Laser Pulses (LMF4-M407) and found that using a water bath improved the taper while performing bottom-up percussion drilling of sapphire. In addition to optimizing the laser-only ablation process, the back side only water bath removed ablated material that was recast onto the sidewalls more efficiently than drilling without one, reducing the biggest process limitation, and allowing higher maximum drilling depths. The water bath’s enhanced debris removal through capillary action also removed the taper and any dependency on drilling speed, so the process was demonstrated on CT90 glass as well with similar excellent results.

With numerous talks on battery applications this year, one of the most well-attended talks was Joanna Helm’s from Fraunhofer ILT, Connecting Battery Cells by Aluminum Ribbon Bonding using Laser Micro Welding (LMF8-M802). She presented her work that integrated a laser welder with a conventional wire bonder complete with automated ribbon supply and integrated cutter for high speed, efficient bonding when connections to large numbers of battery cells are needed. She demonstrated initial results of connecting 6082 aluminum alloy ribbon with two welds on the two poles of a battery pack using an SPI 400 W fiber laser with different process variables such as weld depths, weld lines, overlap, laser power and pulling angle. Mechanically robust connections were made, and characterization and optimization for defect reduction is ongoing.

Many talks featured medical applications, and Togo Shinonaga’s invited talk from Okyama University, Japan, Control of Surface Profile in Periodic Nanostructures Produced with Ultrashort Pulsed Laser (LMF6-M601) showed how creating structures on the surface of a biomaterial with lasers may eventually be able to control cell spreading. He demonstrated that cells aligned to grooves that were cut with 100-1000 nm periods in titanium plates, and determined the optimal laser properties for creating favorable directions, aspect ratios and heights of the channel structures.

Nanomanufacturing Conference Technical Highlights
The Nanomanufacturing Conference, chaired by Professor Yongfeng Lu from the University of Nebraska-Lincoln, had many talks on using lasers for nanoscale manufacturing, and had sessions on photovoltaics, advanced energy devices, battery materials and 2D materials.

Costas Grigoropoulos from the University of California Berkeley gave an invited talk, Laser-Assisted Processing of Layered Dichalcogenide Semiconductors (Nano1-N101) about their new laser-assisted doping process that allows high performance devices to be fabricated from ultra-thin films of 2D transition metal dichalcogenides (TMDCs). The laser-assisted Chemical Vapor Deposition process used multiple lasers at different wavelengths and standard dopant gases to dissociate gas molecules and create vacancies in the thin film to be doped. Thin film transistors were formed on a flexible polymeric substrate with single and bilayer flakes of MoS2 and single crystal WS2 and WSe2 materials as the active semiconductor channel. The successful doping process was selective and tunable, and device performance was reliable and stable for months.

Another invited talk addressed the topic of 3D IC fabrication, important as more microelectronic devices become smaller, lightweight and lower power. Koji Sugioka spoke about his research team’s work at the RIKEN Center for Advanced Photonics in Japan in his talk Tailored Femtosecound Bessel Beams for Fabrication of High aspect-ratio through Si Vias (Nano1-N102). To create small holes in 50 µm and 100 µm thick silicon that are taper free and almost taper free, the group used laser drilling in air with two different Binary Phase plates (BPP) that filter the bessel beam’s phase and reduce the amount of energy needed to fabricate TSVs. Compared to Gaussian-shaped beams and Bessel beams that used an Axicon lens alone, SEM images before and after cleaning confirmed the vias could be produced with superior profiles.

A well-attended talk from the Advanced Energy session on generating flexible printed “batteries” for the next generation of bendable, wearable and portable devices was given by Anming Hu: High Performance Hybrid Supercapacitors on Flexible Polyimide Sheets using Femtosecond Laser 3D Writing from the University of Tennessee Knoxville. He demonstrated writing 3D battery-style supercapacitor cells by laser radiating nanoparticles on Kapton insulator tape that produced porous carbonized structures that changed their conductivity from insulating to conducting. After charging to 3.7 V for 3 minutes, they powered 1 cm x 1 cm LEDs and retained 97 percent efficiency over 2000 cycles for more than a month, behaving similar to a coin-style battery.

Networking and Access to Industry Leaders
ICALEO not only offers the industry’s most comprehensive technical content but also offers access to influential leaders at Fortune 500 companies across manufacturing industries in Automotive, Aerospace, Commercial Electronics, Communications, Medical Device, R&D and Semiconductors.

The Sunday Welcome Celebration, complete with music from  the industry’s own Ron Schaeffer, Henrikki Pantsar and guest musician Matt Henry, and Monday night’s President’s Reception were well-attended opportunities to meet members of the LIA Executive Committee and Board of Directors, as well as connect with colleagues from around the world.

Dr. Kaushik Iyer, a first-time attendee from Johns Hopkins University Applied Physics Department, said the conference was the “perfect size, excellent content, global networking!” Mr. Christoph Mittelstädt from BIAS, Bremer Institut für angewandte Strahltechnik GmbH, said ICALEO is “one of the best technical conferences I attend all year!”

The Vendor Reception & Tabletop Display hosted a pavilion full of sponsors and vendors where Ken Dzurko, General Manager of SPI Lasers, said “LIA does a great job creating a comfortable, relaxed mood right for exchanging ideas at this one-of-a-kind event that’s really the world’s premier gathering of scientists interested in laser applications.”

Nikolas von Freyhold, Industrial Laser Product Manager from ICALEO sponsor JENOPTIK appreciates the fact that he can reach people who use lasers in both industry and academia at ICALEO. “This is a good place to spread the word about our application lab and interest in demonstrating what our newest femtosecond lasers can do,” he says.

Neil Ball, President of Directed Light, Inc. and newly-honored LIA Fellow, calls ICALEO “bar none, the best networking opportunity and the best opportunity to look forward and see what applications are on the horizon. As a laser professional and exhibitor, there is only one event on my calendar that is a must exhibit every year, and that would be ICALEO. Nowhere on the planet do you have the opportunity to network with the industries’ elite decisions makers.”

LIA Awards
Highlights of the year mentioned at the LIA Annual Meeting and Awards Luncheon included launching the industry’s first web-based Laser Safety Hazard Analysis system – The EVALUATOR, many education and outreach activities, and reducing student membership rates by 50 percent.

Executive Director Peter Baker was honored as the first recipient of the new LIA Leadership Award, and he received a standing ovation after his look back over more than two decades at the LIA and entertaining talk about life and leadership lessons. Retiring next April, Baker publicized the job opening and encouraged people to apply for Executive Director of the LIA, saying “it is a great job and you couldn’t wish for better bosses. People crave a job that is meaningful, and at LIA we’re saving eyesight, preventing skin damage, and helping create laser technologies, products and services that make the world a better place.”

During the luncheon, the Arthur L. Schawlow Award was presented to Prof. Yongfeng Lu. This is LIA’s highest achievement award, created to honor individuals who have made outstanding contributions in laser applications. Named after the Nobel Laureate and founder of LIA, it has been presented since 1982. The 2016 winner, Yongfeng Lu, an LIA Board Member, Past President, Treasurer, Fellow, Lott Distinguished Professor of Engineering at the University of Nebraska-Lincoln, with hundreds of published papers, research projects and products, presented the Honored Speaker Address, A Small World With Lasers. He took the audience on a journey through the past to witness his 25 years of laser processing and material characterization experience, and to all the countries where his work occurred, summarizing each with a single phrase.

LIA also honored Silke Pflueger and Neil Ball, elevating them to the highest level of membership as LIA Fellows.

By a unanimous decision, the first place ICALEO Poster Award went to Kohei Asano and his colleagues from Osaka University, the Industrial Research Institute of Ishikawa, and Yamazaki Mazak Corporation in Japan for their poster Copper Layer Formation Produced with 100 W Blue Direct Diode Laser System (P110).

The First Place Student Paper Award winner was Christian Hagenlocher from IFSW in Stuttgart, Germany, for his paper Space and Time Resolved Determination of Thermomechanical Deformation Adjacent to the Solidification Zone during Hot Crack Formation in Laser Welding (1202).

The closing plenary session highlighted lasers used in emerging areas with talks on paint stripping, the dairy industry, and a report from Magnus Bengtsson from Coherent, Inc. about the latest trends in the major electronics component market segments.

ICALEO 2016 proceedings are now available for sale online at www.lia.org/store. Visit www.icaleo.org for more information on ICAELO 2017, which will be held Oct. 22-26 in Atlanta, GA.

Debbie Sniderman is CEO of VI Ventures, an engineering consulting company.

Laser Institute of America Honors Peter Baker as First Recipient of Leadership Award

FOR IMMEDIATE RELEASE

ORLANDO, FL, DECEMBER 9, 2016 — The Laser Institute of America (LIA), whose mission is to foster lasers, laser applications, and laser safety worldwide, announced the first recipient of the LIA Leadership Award; presented to none other than LIA’s Executive Director Peter Baker.

The award criteria focuses on an individual who has demonstrated outstanding leadership in an organization or a company and has significantly benefited the world laser community.  The recipient may have also led to major global impacts in the advancement of laser science, technology, engineering, education or applications. “It makes perfect sense that Peter should be the first recipient,” said LIA President Professor Lin Li. “He has left a footprint by providing a comprehensive package of experience, relationships and technical support that translates to long-term success.”

LIA’s 2016 President Lin Li (right) presents Executive Director Peter Baker with the first LIA Leadership Award

Baker was honored with the award in October during the 35th annual International Congress on Applications of Lasers & Electro-Optics (ICALEO®), which is known as the world’s premier gathering of scientists, engineers and technicians engaged in laser applications. The conference is steered by an international select committee of industry leaders and has grown under Bakers leadership at LIA.

“Deservedly so, Peter takes the stage again being recognized for 28 years of outstanding leadership in developing the Laser Institute of America, whose worldwide impacts continue to promote the advancement in laser sciences, technologies, applications and safe use of lasers,”  Li added. “Moving forward, this award will be named after him, as the Peter Baker Leadership Award.”

Peter Baker has led LIA for the past 28 years. The organization provides global support for laser applications and safety.  “Peter is known for being an exceptional guy, with a big heart for people — someone who has a great understanding of the laser business.” said LIA’s Marketing Director Jim Naugle, a longtime friend of Baker’s. His colleagues say they are very appreciative of what he has done to carry out LIA’s mission worldwide.

“I am pleased and honored to receive this award and to have it named after me in the future,” says Baker. “It means a lot to be appreciated by people I respect and admire. My thanks to President, Lin Li and all those involved.”

Baker was born in London, England. He earned an undergraduate degree in physics with special honors from London University. He worked in aerospace in the UK which provided him the opportunity to build and fly moon trackers, sun trackers and star trackers. “I was always surprised and pleased when something I designed flew successfully,” he says.

Peter’s career included extensive experience in business.  After moving to the US in his 20′s, working at several companies and gaining management experience, Baker’s research garnered an invitation to LIA’s very first International Laser Materials Processing Conference to present a paper. Soon after, Baker was elected as LIA’s Treasurer and then became LIA President in 1987. Baker relocated LIA to Orlando, FL in 1989 and rest is history.

About LIA
The Laser Institute of America (LIA) is the professional society for laser applications and safety serving the industrial, educational, medical, research and government communities throughout the world since 1968. www.lia.org, 13501 Ingenuity Drive, Ste 128, Orlando, FL 32826, +1.407.380.1553.

Unparalleled Laser Innovations Mark the 35th Edition of ICALEO

Laser Institute of America’s annual meeting of academia and industry highlighted new developments in laser technology and provided a platform for global networking

FOR IMMEDIATE RELEASE

ORLANDO, FL, NOVEMBER 8, 2016 — Over 400 attendees from 20 countries gathered from October 16-20, 2016 at the Sheraton® San Diego in San Diego, CA, for the 2016 Laser Institute of America’s International Congress on Applications of Lasers & Electro-Optics (ICALEO®).

Gathering a highly engaged group of field veterans, new registrants and students, this year’s ICALEO featured more than 200 presentations, 59 peer-reviewed talks, comprehensive biophotonics coverage, and the introduction of the new ICALEO mobile app. Returning Congress General Chair Silke Pflueger was back at the helm helping compile the most highly-rated Opening Plenary presentations delivered at an ICALEO conference thus far.

“We worked so hard this year to ensure, ICALEO 2016 once again exceeded all expectations,” said Pflueger. “Our opening plenary session is a great example. From visiting Mars, to self-driving cars and a LIGO revisit, we inspired new outlooks and forged new relationships, which is what ICALEO is all about.”

Opening plenary speakers included Nina Lanza from Los Alamos National Laboratory, who linked humanity together in her discussion about the laser used aboard the Opportunity rover on Mars, and Jim McBride from Ford Motor Company, who talked about the challenges of sensing on fully autonomous vehicles. Albert Lazzarini, Deputy Director of LIGO Laboratory at California Institute of Technology, presented breaking results regarding black holes made from the first gravitational waves detected by LIGO.

This year’s ICALEO also featured a variety of laser research and experimentation revelations, from the use of lasers in emerging areas, like paint stripping and dairy, to microprocessing and several new opportunities in wearables and medicine.

Highlights of the roughly 200 presentations include:

  • The writing of skin by 3D printed cells with ultrafast lasers, and insight into how creating structures on the surface of a biomaterial with lasers may eventually be able to control cell spreading
  • How to improve processing speed and precision with new beam delivery and beam shaping techniques, and how to optimize later cutting processes through Time Resolved Analysis of Nanosecond Pulsed Laser Processing of CFRP
  • A laser technique to modify the surface of bulk glass, called Picosecond Laser Pulses for Spatially Resolved Gloss Reduction, which demonstrated glass with dramatic gloss reduction by direct laser structuring
  • A new laser-assisted doping process that allows high performance devices to be fabricated from ultra-thin films of 2D transition metal dichalcogenides (TMDCs).
  • The successful applications of laser ablation for next generation contactless payment cards and flexible wearable devices and the generation of flexible printed “batteries” for future bendable, wearable and portable devices

Other highlights include LIA Executive Director Peter Baker’s honor as the first recipient of the new LIA Leadership Award. Retiring next April, Baker commented on his meaningful career: “At LIA we’re saving eyesight, preventing skin damage, and helping create laser technologies, products, and services that make the world a better place.”

The 2016 Arthur L. Schawlow Award was awarded to Yongfeng Lu, the Lott Distinguished Professor of Engineering at the University of Nebraska-Lincoln, LIA Board Member, Past President, Treasurer and Fellow. LIA also honored Silke Pflueger and Neil Ball by elevating them to the highest level of membership as LIA Fellows.

By unanimous decision, the first place ICALEO Poster Award went to Kohei Asano and his colleagues from Osaka University, the Industrial Research Institute of Ishikawa, and Yamazaki Mazak Corporation in Japan for their poster Copper Layer Formation Produced with 100W Blue Direct Diode Laser System, while the first place Student Paper Award winner was Christian Hagenlocher from IFSW in Stuttgart, Germany, for his paper Space and Time Resolved Determination of Thermomechanical Deformation Adjacent to the Solidification Zone during Hot Crack Formation in Laser Welding.

As the 35th ICALEO ended, Neil Ball, newly-honored LIA Fellow, called the breakthrough laser event, “bar none, the best networking opportunity and the best opportunity to look forward and see what applications are on the horizon.”

Ken Dzurko, General Manager of SPI Lasers said, “LIA does a great job creating a comfortable, relaxed mood right for exchanging ideas at this one-of-a-kind event that’s really the world’s premier gathering of scientists interested in laser applications.”

ICALEO 2016 proceedings are available for sale at www.lia.org/store. For more information on ICALEO 2017, held Oct 22-26 in Atlanta, GA, visit www.lia.org/conferences/icaleo.

About LIA

The Laser Institute of America (LIA) is the professional society for laser applications and safety serving the industrial, educational, medical, research and government communities throughout the world since 1968. www.lia.org, 13501 Ingenuity Drive, Ste 128, Orlando, FL 32826, +1.407.380.1553.

Weekly Lasers Wrap Up: Week of October 24, 2016

The Laser Institute of America LasersToday.com Weekly Wrap-Up aggregates industry news, conference updates, and LIA happenings. Here is the latest:

Industry News

Valuable Resources in Laser Manufacturing

When discussing resources to increase your laser manufacturing knowledge, blogs may not be the first thing that comes to mind! There are plenty of credible, informative laser manufacturing blogs online. This week, on Lasers Today we highlighted some of our favorites, suitable for every level of laser professional. Check it out here.

With the new year quickly approaching, be sure to take a closer look at the new reporting guidelines from OSHA. The new guidelines require all incidents to be reported online, where they can be viewed by the public. The decision has divided affected industries, with some celebrating the increased transparency, and others citing privacy concerns and the potential for bad press as negatives for the decision. Find the details here.

In case you missed it last week, Lasers Today shared a guest post on The Magic of Nonlinear Laser Processing: Shaping Multi-Functional Lab-in-Fiber. Learn how the manipulation of femtosecond laser light inside transparent media can be used for dense memory storage, 3D circuits, and more. Find the in-depth look at the process here.

LIA Happenings

Are you a medical professional who works with or around lasers? Be sure to check out An Overview of Medical Laser Safety Courses to determine which medical laser safety course is right for your needs. A large portion of laser applications take place within the medical field, and the diverse course offerings reflect this, making it easy for you to stay on top of your laser safety education. Included in the blog post is a link to our free e-book Tackling Laser Safety in the Classroom. Find it all here.

Conference Updates

Industrial Lasers featured an ICALEO® wrap-up this week, giving an excellent first-hand experience from inside the conference. Check out the post from the Chief Editor of the publication here.

Don’t miss a single laser industry update! Sign up today to receive the latest in lasers delivered straight to your inbox. Be sure to follow LIA on Facebook and Twitter for even more laser news.

The Laser Institute of America (LIA) is the international society for laser applications and safety. Our mission is to foster lasers, laser applications, and laser safety worldwide. Find us at www.lia.org