Meet PhotoMachining, Inc. – August’s Featured Corporate Member

In 1997, John O’Connell and Ronald Schaeffer founded PhotoMachining, Inc., a world leader in precision micromachining applications.

The company specializes in the use of Ultraviolet (UV) and Ultra Short Pulse (USP) lasers. Their lasers come in

3 wavelength femtosecond laser micromachining system

a wide variety of wavelengths, which enables them to provide the laser industry with laser micromachining, contract manufacturing, and laser micro machining systems for industrial applications specific to customer requests.

“The development of laser technology has occurred to a great extent over the last 20 years and we have always tried to have the newest lasers available,” said Dr. Ronald Schaeffer, Chief Executive Officer with PhotoMachining. “We were at the forefront of developing novel laser techniques using high pulse rate USP lasers with both fixed optics and galvo scanners.”

Their team of approximately 25 employees make up two divisions: the Systems Division and the Job Shop Division. Both divisions work together to create innovative systems for their customers’ unique industry needs. The company’s services reach a large variety of markets, which include medical devices, microelectronics, and semiconductors. They have even collaborated on projects related to aerospace and defense.

Laser process development engineer micromachining a novel medical device

“We are proud to deliver products to our customers that give them a competitive edge,” said Schaeffer. “We are particularly proud of the processes we have specifically developed for some of the leading medical device manufacturers, which have greatly reduced costs and downtime for our clients.” PhotoMachining, Inc. is continuously trying to innovate and grow. “Our staff is highly motivated to tackle some of the most difficult manufacturing processes regarding precision and economic viability in a production environment,” Schaeffer said. “It requires multiple talents in laser material interaction, systems integration, automation and software to produce highly reliable laser machining systems.”

Based out of Pelham, New Hampshire, the company is looking forward to exploring new initiatives. According to Schaeffer, one such initiative is, “3D printing in optically clear materials through Selective Laser Etching (SLE) with LightFab.”

“The SLE process involves exposing hard brittle and otherwise transparent materials like

Examples of micron-scale machining in soft (plastics) to hard (diamond) materials

Quartz and Fused Silica to USP laser light and then chemically etching the exposed area away, where etching selectivity after laser exposure is enhanced over a thousand times,” Schaeffer said. “This method makes 3D precision parts by essentially 3D printing the pattern inside the bulk of the material. SLE is expected to play a major role in many manufacturing processes such as microfluidics.”

PhotoMachining Inc., an LIA corporate member since 2005, actively participates in a number of networking opportunities, allowing them to rub elbows with industry leaders, scientists, and investors from around the world.

“We are active participants at ICALEO and LME conferences and find that LIA is a great place to meet others involved in the laser industry,” Schaeffer said. “LIA is like home.”

The company is always looking towards the future by working alongside new companies with fresh ideas. “Although we work with Fortune 500 corporations,” said O’Connell. “It is gratifying to help startups by producing a handful of prototypes and developing economically viable full production volumes.”

Ron Schaeffer is an active educator within the laser community and has given countless seminars on laser technology and laser materials processing.  For an example of his work, here is a short video on “How Lasers Work”. For more information about PhotoMachining Inc., please visit http://www.photomachining.com/

This corporate member feature was written by Brandon Kalloo in collaboration with PhotoMachining, Inc.

Ultra-short Pulse Laser Processing of CFRP with Kilowatt Average Power

By: Christian Freitag1,2, Margit Wiedenmann1, Jan-Philipp Negel1, André Loescher1, Volkher Onuseit1, Rudolf Weber1, Marwan Abdou Ahmed1, Thomas Graf1

In order to process Carbon fiber reinforced plastics (CFRP) with a satisfying productivity, average laser powers >1 kW are necessary. Usually high average laser powers are achieved using continuous wave (cw) laser systems but the appearance of thermal damage ranging from 50 µm to several mm was observed using cw lasers for CFRP processing. According to model predictions the absorbed intensity has to be larger than 108 W/cm² to achieve a thermal damage smaller than 10 µm. Today such high intensities are conveniently achieved with ultra-short pulse laser systems. However, the average laser power of such laser systems is usually too low for productive cutting processes. The IFSW thin-disk multipass amplifier allows for the first time ultra-short pulse laser processing of CFRP at an average laser power of 1.1 kW with pulse energies of 3.7 mJ.

Fig. 1. A sketch of the experimental setup is shown.

Experimental setup

A sketch of the experimental setup used in this study is shown in Fig. 1. The laser source is a thin-disk multipass amplifier for 8 ps pulses with a maximum used average output power of 1100 W. The laser has a constant pulse repetition rate of 300 kHz which gives a maximum pulse energy of about 3.7 mJ. The laser emits at a wavelength of 1030 nm with a beam quality factor  < 1.4. A fast scanner system was used leading to a maximum feed rate of the laser beam of 30 m/s. The resulting focal diameter was calculated to be about 125 µm (1/e² intensity level). The CFRP samples used were Toray T700S-12k carbon fibers with a RTM 6 matrix which is a monocomponent resin. The samples were processed by ablating on a circular path with a diameter of 50 mm in a multi-pass process.

Heat accumulation effects as a limitation

The heat affected area, where the matrix material is vaporized leaving blank carbon fibers, is called matrix evaporation zone (MEZ). The extent of the MEZ for different feed rates of the laser beam after 15 and 50 scans can be seen in Fig. 2. For both number of scans the extent of the MEZ becomes larger with decreasing feed rate. This is a consequence of the pulse-accumulation effect. Each laser pulse contributes to the heating of the processed material. This accumulation results in additional matrix damage if the temporal delay between consecutive pulses is too short for the material to cool down to almost its initial temperature. To limit the influence of the pulses-accumulation effect, the number of pulses applied at one spot should be reduced by choosing a high feed rate up to complete separation of the consecutive laser pulses.

Beside the pulse-accumulation effect, the scan-accumulation effect can also be observed in Fig. 2.  For

Fig. 2. The extent of the MEZ is shown for different feed rates at 1.1 kW average laser power after 15 and 50 scans.

an increasing number of scans, here from 15 to 50 scans, the MEZ increases significantly especially for low feed rates. The scan-accumulation effect is a major damaging mechanism when cutting CFRP with high average laser powers using a multipass process. Like the pulse-accumulation effect it also contributes to the increase of temperature in the compound but on a slower time scale. A characteristic parameter of the scan-accumulation effect is the number of scans above which the scan-accumulation effect causes additional matrix damage. The scan-accumulation damage develops, if a critical number of scans Ncritical is exceeded. Below this threshold, matrix damage is primarily caused by single-pulse damage or by the pulse-accumulation effect as can be seen in Fig. 2 for 15 scans. Above the critical number of scans, the matrix damage is mainly caused by the scan-accumulation effect as it is the case for 50 scans.

Cutting CFRP with high quality and high productivity

Fig. 3. Images of a cut in CFRP. a) Top view of the cut. b) Microscope image of a cross section of the cut. c) Magnified microscope image of the right, inner part of the cut. CFRP has been cut with a thermal damage smaller than 10 µm.

A rectangular shaped CFRP part was cut with 1.1 kW average laser power. To avoid the pulse-accumulation effect, a feed rate of 30 m/s was chosen. The influence of the scan-accumulation effect was reduced by a long cutting contour of 640 mm which increases the temporal delay between two consecutive scans. However, the scan-accumulation effect could not be completely avoided. Therefore, after each 200 scans, which are for this contour length still below the critical number of scans, a break of about 1 minute was implemented. The duration of this break was not yet optimized and is certainly much too long. The laser could be used for other processes during this break to further improve the productivity.

A view from the top on the cut work piece can be seen in Fig. 3a). It is noted that the gap between the inner and outer part does not represent the actual ablated kerf width. In total about 2100 scans where necessary to completely cut the material. With the applied feed rate of 30 m/s the effective average cutting speed was 0.9 m/min. By further optimization of the cutting process e.g. by ablating multiple parallel lines to increase the kerf width, an additional improvement of the effective cutting speed may be achieved.

The achieved quality of the cut can be seen in Fig. 3b) in a cross section. The inner part of the cut rectangle is shown on the right side while the outer part can be seen on the left. In Fig. 3b) some damage in the range of 200 µm is seen on the outer part.  In Fig. 3b) and in the magnification of this part in Fig. 3c) it can be seen that the inner part of the cut has no measureable thermal damage.

Conclusion

A novel ultra-short pulse laser system with an average laser power of 1.1 kW, 8 ps and 300 kHz was used to process CFRP.

Ablation experiments in CFRP with different feed-rates revealed the impact of the pulse-accumulation effect on the formation of the matrix evaporation zone (MEZ). For lower feed rates and therefore higher pulse overlaps the MEZ increases. A very important influencing factor on the MEZ formation is the scan-accumulation effect. This effect can lead to a burning of the matrix material and therefore to vast thermal damage. A characteristic value for the scan-accumulation effect is the critical number of scans above which the extent of the MEZ starts to increase very rapidly.

To demonstrate the capabilities of the used innovative laser source, CFRP has been cut with an effective average cutting speed of 0.9 m/min and no measureable thermal damage on the inner part of the cut rectangle.

 

 

1 Institut für Strahlwerkzeuge IFSW, Universität Stuttgart, Pfaffenwaldring 43, 70569 Stuttgart, Germany

2Graduate School of advanced Manufacturing Engineering GSaME, Universität Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany

Digital Photonic Production and Its Emerging Opportunities

By Christian Hinke

Digital photonic production enables us to fabricate almost any component or product directly from digital data. Experts characterize the photon or the laser as the only tool that “works” as quickly as a computer “thinks.” An office laser printer functions according to this principle and reveals what will be possible in future manufacturing with high energy lasers – when the fundamental interactions between material, light and photonic process chains have been understood and, based on this knowledge, digital photonic production systems have been put into practice. Continue reading

Carving Extremely Hard and Brittle Material with a Laser Beam

By: Dr. Lim Gnian Cher

Laser is a potential tool for machining structural profiles on hard and brittle materials such as ceramics and carbides that traditional tools and methods find them near impossible to do.  EDM (electro-discharge machining) may be used for substrates that are conductive, such as tungsten carbide.  However, drilling small holes or machining channels and other features that are less than 100 um in dimensions cannot be achieved even with EDM.

Continue reading

Real-Time Control of Polarization in High-Aspect-Ratio Ultra-Short-Pulse Laser Micro-Machining

By: O. J. Allegre, W. Perrie, K. Bauchert, G. Dearden, K. G. Watkins

Laser Group, School of Engineering, University of Liverpool, UK
Boulder Nonlinear Systems, Inc., Colorado

The past decade has seen the development of ultra-short pulse lasers, with processes based on femtosecond and picosecond pulse durations becoming increasingly widespread. Thanks to the ultra-short timescale on which laser energy is coupled to the material, high precision machining of metals has been achieved with very little thermal damage. Industrial applications include the very precise drilling of holes for fuel-injection nozzles in the automotive industry. Polarization plays a particularly important role in drilling high-aspect-ratio (depth/diameter) microscopic holes in metal. Drilling with a linear polarized laser beam produces distorted hole profiles due to the anisotropic reflectivity of linear polarization. This paper describes the use of a liquid-crystal polarization rotator developed by Boulder Nonlinear Systems, Inc. to improve drilling quality by removing the distortions associated with static linear polarization. This flexible device allows rapid switching of the linear polarization of a laser beam between two orthogonal directions during micro-drilling. As a proof of principle, helical drilling tests were performed on stainless steel, using a 775 nm, 200 femtosecond pulse laser.

Continue reading