Novel Multi-Beam Processing System for Laser Additive Manufacturing

By Rahul Patwa, Hans Herfurth and Jyoti Mazumder

Additive manufacturing (AM) processes (also commonly referred to as 3D printing) allows the layer-by-layer build-up of parts rather than through molding or subtractive techniques such as machining. The idea that AM machines can print 3D objects much the same way that inkjet printer creates 2D images on paper is being described as “the next industrial revolution”1. Currently there are a number of AM processes that use a variety of materials (plastic, metal, ceramics) in different forms (powders, liquids, wire or sheets) with different heating sources. Continue reading

Post-Processing of LAM Parts with Ultrafast Lasers

By Ilya Mingareev, Tobias Bonhoff, Ashraf F. El-Sherif, Wilhelm Meiners, Ingomar Kelbassa, Tim Biermann and Martin Richardson

Laser Additive Manufacturing (LAM) is a rapidly developing field of advanced fabrication technologies that will benefit many industries by enabling near-net shape manufacturing of high-value components from metals, ceramics and compound materials. However, the geometry and the surface quality of parts produced by LAM can be significantly affected by heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the laser tool motion. The dimensional accuracy is insufficient for many application areas, thus requiring a certain amount of post-processing such as CNC milling and polishing. While efficient for solid and bulk components, conventional post-processing techniques cannot be applied to parts made of brittle, heat-sensitive materials, many multi-layer material systems and components with engineered porosity. Continue reading

LAM 2013 Presents Groundbreaking Applications in AM

By Geoff Giordano

If additive manufacturing is becoming the next big thing as some experts and companies believe, the Laser Institute of America’s fifth-annual Laser Additive Manufacturing (LAM®) Workshop helped pave the way by providing more information on the road map leading to an AM revolution.

Situated in its largest venue yet, LAM 2013 featured more than 20 presentations covering everything from nuts-and-bolts  cladding and repair to sky’s-the-limit projections of the growing impact of additive processes. While US government initiatives trumpet innovation in photonics and manufacturing, LIA continues to lead the charge in advocating greater profitability through advanced laser-based AM applications.

Continue reading

New Industrial Systems & Concepts for Highest Laser Cladding Efficiency

By: Eckhard Beyer

Fraunhofer IWS

Over the past decade laser buildup welding transitioned from mostly specialized laboratory efforts into an established industrial technology for high quality and precise surface coating deposition. Compared to traditional plasma powder buildup welding processes, laser cladding generates superior corrosion and wear protective coatings. The laser process can also generate localized surface functionalities. These combined traits of the process ultimately led to the industrial breakthrough of the technology. Today there are no acceptable alternatives to laser cladding for many applications including mining, oil and gas production and tool and die making. Continue reading

Laser Surface Treatment and Additive Manufacturing – Basics and Application Examples

By: Dr. Ingomar Kelbassa

Laser Surface Treatment and Additive Manufacturing have a strong impact on classical manufacturing and repair tasks addressing markets such as turbo machinery, aeronautics, automotive, off-shore and mining as well as tool, die, and mold making and life science.

Continue reading