Inventors Synthesize Graphene with Lasers

As featured in the LIA TODAY

By Liliana Caldero

Graphene – it’s the two-dimensional (2D) allotrope of carbon atoms that ignited the imaginations of researchers across the globe. Heralded as a ‘miracle material’, its potential seemed limitless and it was predicted to usher in the next generation of technology. Flexible, stronger than steel, transparent, lightweight, and an amazing conductor of heat and electricity, it was going to revolutionize everything from household electronics to biomedical nanotechnology.

 

THE PROBLEM

Yet, nearly eight years after Dr. Andre Geim and Dr. Konstantin Novoselov earned the Nobel Prize in Physics for first isolating graphene and identifying its properties, graphene has encountered barriers to moving out of the lab and into the marketplace. According to Prof. Dr. Aravinda Kar of the University of Central Florida’s Center for Research and Education in Optics and Lasers (CREOL), one of the most prominent barriers has been finding scalable manufacturing processes that can produce graphene of a quality and quantity ready for consumers and businesses.

Graphene is notoriously difficult to synthesize in large quantities at a consistent quality. Early methods of isolating graphene involved a slow and tedious mechanical exfoliation technique; the researchers would extract a thin layer of graphite from a graphite crystal using regular adhesive tape, continually reducing the graphite sample by sticking the tape together and pulling it apart until only a small, 2D section of carbon atoms with a honeycomb lattice remained. Graphene’s unique characteristics are only present when it is one, two, or three layers of atoms thick – any thicker and it becomes graphite, losing all of the exceptional properties of graphene. The tape exfoliation method, although useful for the lab, was not going to translate very well to an industrialized process.

 

SOLVENT-AIDED EXFOLIATION AND CVD

Two of the more promising and potentially scalable methods of producing graphene are solvent-aided exfoliation and chemical vapor deposition (CVD). In solvent-aided exfoliation, sonication is used to exfoliate graphene crystals which are then further separated in a solvent and later gathered into graphene monolayers.  Scientists at the National University of Singapore have identified a flocculation method that reduces the amount of solvent needed for their exfoliation process, which could yield graphene using far less solvent than was previously needed. Another method experiencing innovation is CVD, which uses thermal chemical reactions to ‘grow’ graphene on substrates of specific materials, typically copper or silicon. Recently, engineers at MIT developed a CVD process for producing graphene filtration membrane sheets at 5 cm per minute. One of the biggest issues with traditional CVD and exfoliation methods is the need to transfer graphene from its fabrication platform to a substrate. Lasers are going to change that.

 

THE MISSING PIECE – LASERS

Lasers may provide yet another avenue to the elusive mass production of graphene, with an eye toward innovating the semiconductor industry. In 2003, Kar, along with Dr. Islam Salama and Dr. Nathaniel Quick, realized that laser direct writing could be used to fabricate carbon-rich nanoribbons on a silicon carbide (SiC) wafer in a nitrogen rich environment. Although these ribbons were too thick to be considered graphene, Kar believed that with a few changes, this process could be reworked to synthesize graphene in situ on a large scale, very quickly. In 2013, Kar and Quick were issued a patent for a Laser Chemical Vapor Deposition (LCVD) method that could be scaled for mass production.

Their method involved a few simple components: a frequency doubled Nd:YAG (green) laser of 532 nm wavelength, methane (CH4) gas, a silicon substrate, and a vacuum chamber.

The 532 nm wavelength corresponds to a photon of energy 2.33 eV, so the energy of two photons is 4.66 eV, just within the range of the C-H bond energy (4.3-4.85 eV) in CH4. Focusing the laser beam to a high intensity can induce two-photon absorption at the focal plane, causing the decomposition of CH4 to release the hydrogen atoms and deposit carbon atoms only on the substrate. The laser heating of the silicon substrate is just low enough to avoid melting the silicon, while providing sufficient thermal and electromagnetic energies to assist the carbon-carbon bonds rearrange into graphene’s trademark hexagonal pattern.

An experimental set-up for multiphoton photolytic laser chemical vapor deposition (LCVD) of graphene from methane precursor. Image courtesy of Dr. Kar and Dr. Quick.

LASER DIRECT WRITING OF GRAPHENE

Kar believes this process could be adapted to add graphene directly onto any substrate. Using laser direct writing, a company could easily draw graphene circuits onto a board. For companies using a hybrid approach, the graphene could be deposited at precise points as interconnects. “You would have all the CAD/CAM capability you could want,” says Quick. Currently, green lasers are available at high output powers, 100 W in continuous wave mode from most large laser manufacturers, so adding this additional step to the manufacturing pipeline for semiconductors would be easy and inexpensive compared to other methods.

At 1.9 cm per second, or 45 inches per minute, this method of graphene production is fast and efficient. This LCVD method offers control over the number of graphene layers, whether one, two, or three are required.  This process also removes the need to manually place graphene onto its intended location, as it is synthesized precisely where it should be. It’s also worth mentioning that this process is conducive to minimal environmental impact, as the unreacted methane and hydrogen byproducts can be captured to be recycled and reused.

 

A LOOK AT THE FUTURE

Picture this: a template is placed over a substrate and a line-shaped laser beam sweeps over it briefly or a beam of large cross-sectional area illuminates the entire template in one shot; when the template is removed, an intricate graphene design has been printed onto a circuit board. That is the future that Kar says is possible, with the right equipment. He suggests that we need manufacturers to develop lasers producing line-shaped beams or large area beams with spatially uniform intensity profile to realize this vision cost-effectively. He emphasizes that a true line-shaped beam produced by a slab laser system or an array of optical fiber laser would be necessary, as shaping the beam synthetically by changing the shape of an aperture would result in too much lost energy. With this technology, graphene could easily be printed onto circuit boards immediately, only where it’s needed, saving in material costs and time.

Nearly 14 years after the excitement first began, researchers are still exploring the potential uses of graphene; from applications in microsupercapacitors to Organic LEDs in flexible displays to ultra-sensitive optical sensors, and even lightweight body armor, the possibilities are still as exciting as ever.

 

Acknowledgements

Prof. Dr. Aravinda Kar, University of Central Florida, CREOL

Dr. Nathaniel Quick, Executive Director of LIA

 

LEARN MORE

Laser Formation of Graphene: United States Patent 8617669. (N. Quick, A. Kar)
http://www.freepatentsonline.com/8617669.html

NUS-led research team develops cost effective technique for mass production of high-quality graphenehttp://news.nus.edu.sg/press-releases/mass-production-graphene-slurry

MIT researchers develop scalable manufacturing process for graphene sheetshttps://newatlas.com/mit-manufacturing-graphene-filtration-membranes/54274/

LAM 2017

Become Part of the Laser Additive Manufacturing Revolution

By Michelle L. Stock

Additive Manufacturing (AM) has already made big headlines this year as companies such as GE and Ford have announced major initiatives. These headlines hint at the ways that AM processes will impact the manufacturing world and reinforce expectations that an increasing number of production parts will be produced using them. What’s more, metal additive manufacturing has become the fastest growing segment of additive manufacturing as processes mature and the economics of the industrially-available tools become more compelling. As AM makes further inroads in many major industries, LIA’s Laser Additive Manufacturing (LAM®) Workshop provides an unparalleled opportunity to meet with leaders in the development and deployment of laser-based additive manufacturing.

LIA is the world’s premier and oldest organization promoting lasers and their applications and is in its ninth year hosting the LAM Workshop which will be held on Feb. 21-22, 2017 in Houston, TX. Well-known as an aerospace hub and home to strong medical and energy (including both traditional and renewable) sectors, the Houston region has become one of the top ranked US manufacturing cities and provides an ideal setting for advanced manufacturing meetings.

How do Lasers Impact Additive Manufacturing?

As LAM 2017 General Chair Prof. Milan Brandt explains, “The laser has played a pivotal role in the growth of metal AM systems globally in the last few years and will continue to do so in the future. Because it is at the ‘heart’ of metal AM technology, laser developments in terms of power, efficiency, beam quality and reliability parallel the growth and application of metal AM systems globally.”

Brandt continues, “LAM 2017 will provide an opportunity for national and international practitioners involved with laser technology to discuss and explore the latest topics, challenges and progress in additive technology and applications.” He adds that, “the new hot topics include nano-additive technology, medical applications and new software tools.”

Figure of a model of a bone and pelvis with lattice type titanium implant designed and manufactured at RMIT Centre for Additive Manufacturing.

Figure of a spinal Ti lattice-based disc in a model of deformed lumbar vertebrae. The disc was manufactured at RMIT Centre for Additive Manufacturing and implanted into a patient in 2015.

This year, LIA has tapped Brandt of RMIT University (Melbourne, Australia) as General Chair, along with John Hunter of LPW Technology (Pittsburgh, PA) and Prof. Minlin Zhong of Tsinghua University (Beijing, China) as Co-Chairs. Brandt brings 30 years of expertise in laser material processing to his work in additive manufacturing processes. Hunter is an expert in powder manufacture for additive manufacturing. Zhong has a wealth of experience in laser micro- and nano- fabrication and laser surface engineering. With their background and knowledge, this year’s workshop chairs have prepared an outstanding program that builds on past LAM Workshops, provides the latest updates, and peaks into the future.

The Program: AM Trends, Technologies, Applications & Something New

The LAM program will kick off with an overview of Trends in Laser Additive Manufacturing by major companies with high visibility to the state-of-the-art in additive manufacturing. The keynote presentation will be from Greg Morris discussing Accelerating the Additive Revolution. GE’s already extensive activities in AM are undergoing a period of rapid evolution as new acquisitions such as Concept Laser are integrated. A pioneer in the use of AM for medical devices, Stryker Corporation, will be represented by Marc Esformes who will speak about Additive Manufacturing of Medical Implants. Arconic (formerly Alcoa) has also been deeply involved in AM as a material provider and John Barnes will close the session presenting Arconic’s Additive Manufacturing is about the Making.

The first day sessions will continue with speakers from both academia and industry who will provide details on the building blocks of AM: materials, structures and design. To finish off the first day, the final session will focus on a new and exciting area of AM for micro- and nano- structures, and includes a talk on laser printing of graphene.

Day two will focus on technologies and applications. Wayne King of Lawrence Livermore National Laboratory (LLNL) will start the program off with a keynote on Simulation and Modeling of the Metal Powder Bed Fusion Additive Manufacturing Process. Dr. King is an expert on the transition from conventional manufacturing methods to metal additive manufacturing, and LLNL has been a leader in simulation of laser-based AM. The program will continue with the latest updates on monitoring of AM processes and beam profiling and includes talks by Fraunhofer IWS and Siemens.

World-class Networking

One of the highlights of LAM 2017 is the Exhibitor Reception, which caps off the first day of the Workshop. It provides an informal chance to interact with speakers, attendees, and also with LAM’s sponsors, including Alabama Laser, American Cladding Technologies, Inc., Fraunhofer USA, IPG Photonics Corporation, Laserline Inc., LPW Technology, Inc., Optomec,  OR Laser Technology, Inc., Polymet Corporation, Praxair Surface Technologies and TRUMPF Inc. The exhibition will include many key additive manufacturing suppliers. The Reception provides time to network, time to recharge over drinks and food, and most importantly, a chance to find solutions to your additive manufacturing challenges.

“This isn’t just a workshop,” said Jim Naugle, Marketing Director with LIA. “This is an opportunity to establish lifelong business relationships with experts in their respective fields. Our goal is for attendees to leave with more than business cards, we want them to leave with business partners.”

The Must-attend AM Event

LAM 2017 will provide attendees with depth of knowledge in the major laser-based processing technologies, as well as the latest applications and trends. This is the go-to event for laser additive manufacturing. Don’t miss out — visit www.lia.org/lam for more information and to register today. See you in Houston!