Superhydrophobic and Superhydrophilic Functionalization of Engineering Surfaces by Laser Texturing

By Suwas Nikumb, Peter Serles, and Evgueni Bordatchev

As seen in ICALEO 2017 and LIA TODAY

 

Nature is a bountiful source of inspiration to advance innovative surface functionalities, processes, and technologies for engineering materials. For example, the super-hydrophobic surface characteristic of the lotus leaf can be recreated by mimicking the microstructure and surface energy on stainless steels. This super-hydrophobic behavior, which causes water to roll off the lotus leaf while collecting dust particles, enables the self-cleaning of the leaf surface and is primarily due to the hierarchical conical structures, as well as the wax layer present on the leaf surface. A good understanding of the surface topography of the microstructures, water droplet contact angle, and surface chemical composition provides the important clues necessary for the creation of artificial super-hydrophobic or superhydrophilic surfaces and using state-of-the-art ultrafast laser ablation treatment.

Figure 1

Controlling the wettability of a material surface for superhydrophobic or superhydrophilic performance has been an interesting area where numerous different methods are being pursued. While many coatings and thin-films are able to achieve extremely high or low wettability, their endurance life, chemical compatibility, and large area scalability make them less attractive for manufacturing environments. Meanwhile, ultrafast pulsed lasers with several megahertz pulse repetition rates can tune the wettability of a surface without changing its chemical composition and offers higher endurance lives. This is accomplished by instant vaporization (laser ablation) of the material in specific micro-scale patterns thus creating structures that changes the way the surface topography interacts with water.

A superhydrophobic surface is characterized by its ability to repel water using structures that are akin to a bed of nails allowing the water droplet to rest only on the peaks using surface tension and therefore repel from the surface (see Fig.1). Contrarily, a superhydrophilic surface is characterized by its ability to attract and spread the water so features a series of channels that trap water and wick it away using micro-capillary forces. Such surface functionalization techniques have been developed at Canada’s National Research Council for stainless steel (304 SS) and Silicon Carbide (SiC) surfaces respectively to demonstrate the effectiveness of laser texturing technology for wettability control of common engineering surfaces. Fig.2 depicts superhydrophobic performance of a bouncing water droplet at ~5° tilt on 3×3 cm2 textured area.

Experimentally, a 10 W picosecond pulsed laser operating at 1 MHz frequency was focused to a tiny spot of 25 µm diameter. The samples were mounted on a CNC motion system equipped with argon gas protective environment. The optimization of laser structuring process included varying each of the laser parameters, e.g. power, frequency, feed rate, grid pitch, etc. and evaluating the water droplet contact angle using the standard drop-shape analysis method. For the 304 SS superhydrophobic surface, a laser beam fluence of 2.61 J/cm2 was used to promote narrower, shallower features by material redistribution rather than complete vaporization, while the SiC superhydrophilic surface was realized using a much higher fluence of 10.7 J/cm2 to create thicker and deeper channels for the water to impregnate. Both surfaces were machined using the five-axis CNC micromachining system to texture grid patterns, ensuring an even distribution of micro-structures.

Figure 2

 

The superhydrophobicity of 304 SS surface was highly dependent on post-processing conditions in order to tune the wettability. Specifically, the chemical nature of the surface was reactive for 14 days after laser processing due to high-power interaction with the material which excites the chemical state. The samples were thus stored in different environments and exhibited vastly different contact angles. Most notably, the sample which was submerged in deionized water showed hydrophilic tendencies while the sample kept in extremely dry (<8% relative humidity) air was highly superhydrophobic with a contact angle of 152º. Following this two week period, the sample attained stable chemical equilibrium and the wettability was unchanged regardless of environment.

Figure 3

The superhydrophilic SiC surface on the other hand was not as reactive and therefore showed a contact angle of 0º immediately after processing. As aforementioned this sample was intended to have wider and deeper channels to hold and wick the water away from the contact point. The micro-capillary forces that are responsible for spreading the water across the surface were strong enough even to counter gravity; Figure 3 shown below depicts a time-lapse of a 3×3 cm2 textured area placed vertically with the bottom edge in water. Within a 10-second span, the entire surface was wet by the micro-capillary forces pulling water vertically against the force of gravity.

The potential for laser texturing technologies spans many applications in manufacturing industries. Superhydrophobic surfaces have been proposed as a method to mitigate many fluid problems; by decreasing the interaction between a pipe wall and the fluid, the drag experienced by the fluid has been shown to decrease significantly in both laminar and turbulent flows. Thus far, only superhydrophobic coatings and thin-films have been tested for this application however they remain plagued by rapid wear and very short lifetimes. The robustness of the laser texturing process to achieve superhydrophobicity therefore presents exciting new opportunities. As well as water repellency of superhydrophobic surfaces, longer freezing times of water droplets and lower adhesion strength of ice to the surface are characteristics of these high contact angle surfaces and thus present an iceophobic surface property. This enables applications for machinery that operate in colder climates such as wind turbines and airplane wings and engines.

Applications for superhydrophilic surfaces are commonly based on the micro-capillary forces demonstrated as the rapid dispersion creates a thin film of water on the surface. This thin film allows for an increased rate of evaporation from the surface opening doors for anti-fogging applications or greatly increased rates of heat transfer. Other applications manipulate the thickness of the film formed which can provide antireflection ability for surfaces such as solar cells. Superhydrophilic textured surfaces also exhibit increased adhesion strength with the liquid due to the impregnation of the liquid into the surface, therefore providing applications for improvement in bonding strength of joints between different material surfaces.

The wettability control functionalization on engineering surfaces opens the door for new applications with both superhydrophobic and superhydrophilic surfaces. The robust nature of laser surface texturing technologies in combination with chemical compatibility and industrial scalability makes this method unique and most promising to deploy a wide range of functions in manufacturing products. While this technology has already provided solutions to several significant industrial tasks, many more applications are currently being explored at NRC.

 

More details on this topic can be found on YouTube: Combined Wettability Control (https://youtu.be/7IW2aC_rkjw), Super-hydrophobic Bouncing (https://youtu.be/b1vXDuvf3aQ), Super-hydrophilic Ceramic (https://youtu.be/9ZCcW4cOccw), along with other presentations on NRC’s micro/nano-machining capabilities. Further details on these studies can be found in: Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing. Journal of Laser Applications 30, 032505 (2018); https://doi.org/10.2351/1.5040641

Inventors Synthesize Graphene with Lasers

As featured in the LIA TODAY

By Liliana Caldero

Graphene – it’s the two-dimensional (2D) allotrope of carbon atoms that ignited the imaginations of researchers across the globe. Heralded as a ‘miracle material’, its potential seemed limitless and it was predicted to usher in the next generation of technology. Flexible, stronger than steel, transparent, lightweight, and an amazing conductor of heat and electricity, it was going to revolutionize everything from household electronics to biomedical nanotechnology.

 

THE PROBLEM

Yet, nearly eight years after Dr. Andre Geim and Dr. Konstantin Novoselov earned the Nobel Prize in Physics for first isolating graphene and identifying its properties, graphene has encountered barriers to moving out of the lab and into the marketplace. According to Prof. Dr. Aravinda Kar of the University of Central Florida’s Center for Research and Education in Optics and Lasers (CREOL), one of the most prominent barriers has been finding scalable manufacturing processes that can produce graphene of a quality and quantity ready for consumers and businesses.

Graphene is notoriously difficult to synthesize in large quantities at a consistent quality. Early methods of isolating graphene involved a slow and tedious mechanical exfoliation technique; the researchers would extract a thin layer of graphite from a graphite crystal using regular adhesive tape, continually reducing the graphite sample by sticking the tape together and pulling it apart until only a small, 2D section of carbon atoms with a honeycomb lattice remained. Graphene’s unique characteristics are only present when it is one, two, or three layers of atoms thick – any thicker and it becomes graphite, losing all of the exceptional properties of graphene. The tape exfoliation method, although useful for the lab, was not going to translate very well to an industrialized process.

 

SOLVENT-AIDED EXFOLIATION AND CVD

Two of the more promising and potentially scalable methods of producing graphene are solvent-aided exfoliation and chemical vapor deposition (CVD). In solvent-aided exfoliation, sonication is used to exfoliate graphene crystals which are then further separated in a solvent and later gathered into graphene monolayers.  Scientists at the National University of Singapore have identified a flocculation method that reduces the amount of solvent needed for their exfoliation process, which could yield graphene using far less solvent than was previously needed. Another method experiencing innovation is CVD, which uses thermal chemical reactions to ‘grow’ graphene on substrates of specific materials, typically copper or silicon. Recently, engineers at MIT developed a CVD process for producing graphene filtration membrane sheets at 5 cm per minute. One of the biggest issues with traditional CVD and exfoliation methods is the need to transfer graphene from its fabrication platform to a substrate. Lasers are going to change that.

 

THE MISSING PIECE – LASERS

Lasers may provide yet another avenue to the elusive mass production of graphene, with an eye toward innovating the semiconductor industry. In 2003, Kar, along with Dr. Islam Salama and Dr. Nathaniel Quick, realized that laser direct writing could be used to fabricate carbon-rich nanoribbons on a silicon carbide (SiC) wafer in a nitrogen rich environment. Although these ribbons were too thick to be considered graphene, Kar believed that with a few changes, this process could be reworked to synthesize graphene in situ on a large scale, very quickly. In 2013, Kar and Quick were issued a patent for a Laser Chemical Vapor Deposition (LCVD) method that could be scaled for mass production.

Their method involved a few simple components: a frequency doubled Nd:YAG (green) laser of 532 nm wavelength, methane (CH4) gas, a silicon substrate, and a vacuum chamber.

The 532 nm wavelength corresponds to a photon of energy 2.33 eV, so the energy of two photons is 4.66 eV, just within the range of the C-H bond energy (4.3-4.85 eV) in CH4. Focusing the laser beam to a high intensity can induce two-photon absorption at the focal plane, causing the decomposition of CH4 to release the hydrogen atoms and deposit carbon atoms only on the substrate. The laser heating of the silicon substrate is just low enough to avoid melting the silicon, while providing sufficient thermal and electromagnetic energies to assist the carbon-carbon bonds rearrange into graphene’s trademark hexagonal pattern.

An experimental set-up for multiphoton photolytic laser chemical vapor deposition (LCVD) of graphene from methane precursor. Image courtesy of Dr. Kar and Dr. Quick.

LASER DIRECT WRITING OF GRAPHENE

Kar believes this process could be adapted to add graphene directly onto any substrate. Using laser direct writing, a company could easily draw graphene circuits onto a board. For companies using a hybrid approach, the graphene could be deposited at precise points as interconnects. “You would have all the CAD/CAM capability you could want,” says Quick. Currently, green lasers are available at high output powers, 100 W in continuous wave mode from most large laser manufacturers, so adding this additional step to the manufacturing pipeline for semiconductors would be easy and inexpensive compared to other methods.

At 1.9 cm per second, or 45 inches per minute, this method of graphene production is fast and efficient. This LCVD method offers control over the number of graphene layers, whether one, two, or three are required.  This process also removes the need to manually place graphene onto its intended location, as it is synthesized precisely where it should be. It’s also worth mentioning that this process is conducive to minimal environmental impact, as the unreacted methane and hydrogen byproducts can be captured to be recycled and reused.

 

A LOOK AT THE FUTURE

Picture this: a template is placed over a substrate and a line-shaped laser beam sweeps over it briefly or a beam of large cross-sectional area illuminates the entire template in one shot; when the template is removed, an intricate graphene design has been printed onto a circuit board. That is the future that Kar says is possible, with the right equipment. He suggests that we need manufacturers to develop lasers producing line-shaped beams or large area beams with spatially uniform intensity profile to realize this vision cost-effectively. He emphasizes that a true line-shaped beam produced by a slab laser system or an array of optical fiber laser would be necessary, as shaping the beam synthetically by changing the shape of an aperture would result in too much lost energy. With this technology, graphene could easily be printed onto circuit boards immediately, only where it’s needed, saving in material costs and time.

Nearly 14 years after the excitement first began, researchers are still exploring the potential uses of graphene; from applications in microsupercapacitors to Organic LEDs in flexible displays to ultra-sensitive optical sensors, and even lightweight body armor, the possibilities are still as exciting as ever.

 

Acknowledgements

Prof. Dr. Aravinda Kar, University of Central Florida, CREOL

Dr. Nathaniel Quick, Executive Director of LIA

 

LEARN MORE

Laser Formation of Graphene: United States Patent 8617669. (N. Quick, A. Kar)
http://www.freepatentsonline.com/8617669.html

NUS-led research team develops cost effective technique for mass production of high-quality graphenehttp://news.nus.edu.sg/press-releases/mass-production-graphene-slurry

MIT researchers develop scalable manufacturing process for graphene sheetshttps://newatlas.com/mit-manufacturing-graphene-filtration-membranes/54274/

New Sponsor Benefits Unveiled for International Laser Safety Conference 2019

The Laser Institute of America (LIA) has unveiled its updated Sponsor Brochure for its next major conference – the 2019 International Laser Safety Conference (ILSC). Building off of the success of the International Congress on Applications of Lasers & Electro-Optics (ICALEO) last October, LIA has added a suite of new benefits to their sponsor packages, building added value and increased exposure. These packages range from Bronze through to Diamond package sponsorships, catering to various degrees of marketing opportunities.

Aligning with LIA’s further emphasis on digital marketing, all packages now include opportunities for video interviews during the event that will be distributed across LIA’s digital platforms, highlighting the sponsor’s participation at ILSC 2019.

On-site exposure for all sponsors has also been improved throughout the conference, with increased quality, quantity and variety of branding visible across all events.

Higher tier sponsors receive additional publication opportunities in the form of dedicated interviews published in the ILSC issue of LIA’s bimonthly newsletter LIA TODAY, and the publication of press releases on the popular Lasers Today blog.

Industry leaders and top tier sponsors will also be invited to share their knowledge and expertise on key laser safety topics during exclusive panel discussions during the event. These opportunities come in addition to the traditional recognition and advertisement space in the LIA TODAY ILSC issue, Advanced Program, and Conference Program and Proceedings.

“Companies with a passion for laser safety should strongly consider sponsoring ILSC 2019. This is one of the events where the champions of laser safety really shine,” says Steven Glover, Program Manager at LIA.

To learn more, or to apply to be an ILSC 2019 sponsor, download the Sponsor Brochure today.

Original Article can be found here: http://www.kake.com/story/39710480/new-sponsor-benefits-unveiled-for-international-laser-safety-conference-2019

LIA Today Exclusive: A Cuppa With Milan Brandt

Provided by the November/December 2018 issue of LIA Today

In celebration of LIA’s 50th Anniversary, we took our tea and questions to ask our President, Milan Brandt, on his thoughts on laser materials processing – the global trends, research, developments and unique advantages over other technologies.

Welcome Milan and thank you for joining us today. There have been strong projections made for the global laser materials processing market; can you tell us about some of the unique global trends that you see in laser materials processing applications?

Milan: Laser materials processing globally is focused on and driven by additive manufacturing. In the “powder fed” or laser metal deposition area the trend is more industrial applications, such as repair and refurbishment of high value components in the aerospace, defense, and mining sectors. The research in this area is focused on the printing of large structures and hybrid manufacturing involving both subtractive and additive processes in one machine. In the “powder bed” area, the focus from industrial perspective is on standards, process reliability, process qualification while from the research perspective the focus is on new materials for printing, process monitoring, software tools for design for manufacture and new cheaper and faster printing systems.

As a professor at RMIT, can you tell us about some of the significant laser technology developments that were fostered at RMIT under your leadership?

Milan: The RMIT Centre for Additive Manufacturing researches and develops additive manufacturing technology for design of parts, materials, and processing to improve the mechanical properties of aircraft structures under fatigue loading conditions, in particular for repair of those aircraft structures. Some of this research has now been transferred to local industry.

Do you have any laser design concepts that you would like researchers to pursue in the future? 

Milan: A limitation of current “powder-bed” systems is the use of multi-materials in a build. Development of such systems would allow new structures to be designed and manufactured with properties not possible with current technologies. In the “powder-bed” systems, the ability to manipulate and control the microstructure as the part is being manufactured would open up a range of new applications.

Laser processing market is expected to reach $23 billion by 2025, tell us about some areas where laser materials processing has a unique advantage over other technologies?

Milan: The main benefits lasers offer to manufacturers compared to other technologies include:

  • The ability to produce a wide range of wavelengths
  • The ability to produce a wide range of irradiance (power per unit area) levels at the surface of a workpiece, thereby changing the physical state of that surface from solid to melting through a non-contact interaction;
  • The ability to easily manipulate the beam through computer numerical control techniques because it has no weight or mechanical contact with the workpiece; and,
  • The ability to shape the laser beam on the workpiece both spatially and temporally, thus enabling processing of a wide range of materials and component shapes

These translate into, for example, relatively rapid and low heat input process compared to other metal melting technologies, resulting in microstructures with superior mechanical properties and parts with low residual stresses and distortion. Also, the small laser focus allows for finer structures and features to be manufactured in the “powder bed” systems compared to e-beam technology.

Do you think the existing laser/photonics research through commercialization infrastructure is adequate?

Milan: Different countries and regions have different approaches and support for technology commercialization so the question is somewhat broad, but in general, I believe that more encouragement, focus, and support should be given to new ideas and start-ups in the area.

How would you describe LIA’s role in laser/photonics technology acceptance and growth?

Milan: LIA, in my view, has played a central role in the promotion, education, and growth of laser technology and applications globally. It has been the focus for this since its inception. I have been a member of LIA for some 32 years and this has enabled me to not only stay abreast of the latest developments in technology and applications but also develop global connections and networks in the area.

Thank you Milan, it has been our pleasure to have a cuppa with you!


Visit LIA TODAY to read more articles on important industry issues.

ILSC 2017 Gathers the World’s Medical & Industrial Laser Safety Professionals

Written By: Jamie King 

Laser Institute of America’s (LIA) International Laser Safety Conference (ILSC®) was held from March 20-23, 2017 at the Sheraton Atlanta Airport in Atlanta, Georgia.

With over 200 laser safety professionals from around the world attending, medical and industrial workers from novice to expert discussed everything from laser generated air pollution to non ionizing radiation. Held concurrently with a full week of meetings by laser standards committees and punctuated by a host of networking events, ILSC 2017 deftly balanced technical and practical information through over 80 presentations and plenaries.

Pre-Conference Highlights

The day before the official kickoff of the conference, the Accredited Standards Committee (ASC) Z136 assembled to receive updates from the subcommittee chairs and to discuss the future move to vertical/horizontal standards. Robert Thomas, the ASC Z136 chair, thanked the attendees for their diligent and focused work as a committee. The ILSC Welcome Reception was held on the evening before the conference started in the Sheraton Atlanta Solarium. Designed as a destination to meet with friends and acquaintances, safety professionals from around the globe reconnected.

Opening Plenary Focuses on Outside Interests

The Opening Plenary began in the International Ballroom where Conference Chair John O’Hagan of the Public Health England welcomed two invited speakers. Laser Safety Scientific Session (LSSS) Chair Karl Schulmeister of Seibersdorf Laboratories, Medical Practical Applications Seminar (MPAS) co-chairs Kay Ball of Otterbein University, Vangie Dennis of Emory Healthcare, Patti Owens of AestheticMed Consulting International, Leslie Pollard of Southwest Innovative Solutions, Inc., Technical Practical Applications Seminar (TPAS) co-chairs Jamie King of Lawrence Livermore National Laboratory, and Eddie Ciprazo of University of California, Berkeley were also acknowledged for their efforts.

The first presenter, Professor Jacques Abramowicz, discussed the need for an international standard on non-ionizing safety. He stated, “There is no framework and there are gaps in a lack of consistency. There are recommendations, but no standard.” Professor Abramowicz also discussed infrasound, a phenomenon for which there is limited information. He said, “People who think that they may have seen a ghost, may actually be experiencing results of infrasound effects.” In further emphasizing the need for medical standards, he proclaimed that, “Ultrasounds of babies can be performed by non-qualified or certified people and no regulation on ultrasound to do body sculpting and liposuction exists.” Jeffrey Luttrull, M.D. finished up the plenary session with a talk about how lasers are the future of blindness prevention. He stated that, “Up until April 2000 they damaged the retina to treat it. Photocoagulation is found to not be a treatment. Once you take retinal damage away, it is like pushing the reset button.”

From Bioeffects Research to Consumer Products

The Laser Safety Scientific Session (LSSS), chaired by Karl Schulmeister of Seiberdorf Laboratories, provided an assortment of presentations from all fields of laser safety, from safety management programs and the design of products, to bioeffects research to probabilistic risk assessment. As the week progressed, LSSS moved away from the biological arena and into consumer products. Issues covered ranged from Laser Illuminated Light Sources to LEDs. Most of the attention, however, was directed at Class 3R and laser pointers. One talk hinted at the FDA’s proposed change to regulations. Laser pointers less than 610nm would be deemed “defective”. This would inevitably eliminate the use of the green laser pointer from consumer use.

New and Innovative Medical Laser Practices

The Medical Practical Applications Seminar (MPAS) ran from March 20-21. The two-day seminar is designed for medical laser safety professionals who work in operating rooms, surgical centers, aesthetic clinics and medical spas. This year’s focus was biological topics. Co-Chair Vangie Dennis welcomed attendees and discussed the latest insights in plume hazards. Fellow Co-Chair Kay Ball explored hazards, odors, and particulate matter present in plume and named the standards from AORN, ALSMS, OSHA, & LIA and recommendations to reduce plume in the operating room.

Attendees were reminded about the need to evaluate facility policies and standard operational procedures and guidelines and adapt to the new upcoming changes ahead. She went on to say, “Situational awareness is now a risk assessment. Smoke is a hazard when it becomes a plume.” Moving from plumes, Julie Smith and Lois McIntosh showed the before and after pictures of burn victims with the use of laser treatments to even out skin tones and diminish the grafting skin elevation. Edwin Barry covered the use of high intensity laser therapy as an alternative to opioid prescription drugs and gave viable examples of laser treatment for humans and dogs for back pain and accidents. During LSSS, Jack Lund explained how in 1973 there were wavelength dependent MPEs based on a limited number of lasers available. Adam Boretsky described how high intensity lasers are expanding rapidly and how the Air Force Research Lab (AFRL) could procure a new femtosecond laser. They are performing testing on synthetic tissues with the ability to vary pigments. He went on to explain that, “Ultrafast lasers pose risk to the skin and cornea and their work is helping to develop future standards.” Plans include the investigation of nonlinear interactions with tissue and to characterize tissue breakdown.

From Basic Optics to Cutting Edge Technologies

The Technical Practical Applications Seminar (TPAS) was themed, “Back to the Basics.” Eddie Ciprazo led the session with, “So You are the LSO, Now What?” which discussed mastering the challenges that LSOs face today. Following his presentation were talks on splitting up the standard operating procedure into more manageable documents, setting up a laser lab, and automating laser safety programs. Josh Hadler presented his studies of ultrafast pulse laser safety eyewear concluding, “With all of the variables involved, you just may have to test the laser eyewear with your laser to ensure it provides the protection needed.” After this, there were talks on outdoor and high-powered laser operations.The Food and Drug Administration (FDA) discussed what laser professionals need to know and where to find it on their website, followed by a panel session open forum.

Sponsor Reception Highlights

During the Sponsor Reception, laser safety professionals seized the opportunity to explore what new products are available and to allow relationships to be forged between customer and vendor. Platinum sponsors Rockwell Laser Industries and Honeywell were joined by other industry-leading sponsors including ASC Z136, BEAMSTOP’R Laser Barriers, Inc., Buffalo Filter, Engility, Innovative Optics, Inc., Kentek Corporation, Laser Safety Systems, Laservision USA, Lighting Systems Design, Inc., NoIR LaserShields, Ophir-Spiricon LLC, and RT Technologies.

Awards Luncheon & Certification Appreciation Banquet

The ILSC 2017 Awards Luncheon & Certification Banquet recognized top professionals and organizations in laser safety. Bob Thomas of the U.S. Air Force Research Lab (AFRLB) presented the R. James Rockwell Educational Achievement Award to John O’Hagan and the George M. Wilkening Award to Wesley J. Marshall.

The Board of Laser Safety (BLS) Illumination Award was created to recognize an institution, company or organization that directly employs a certified laser safety officer and provides encouragement and support for employee participation within the laser safety community and/or has made outstanding contributions to the field of laser safety. Mount Sinai Health System was recognized this year with employee Jacob Kamen accepting the accolade. “The Mount Sinai Health System is very proud to be a recipient of the BLS Illumination Award. This award validates Mount Sinai has been a significant supporter of laser safety education,” Kamen said.

ILSC will return to Orlando March 18–21, 2019 at the Embassy Suites® Lake Buena Vista South. Check the ILSC website at lia.org/ILSC for updates. If you are interested in joining the ILSC program committee, email ILSC@lia.org. Visit our website www.lia.org/conferences to stay informed on other LIA conferences coming up in 2017.