Laser direct writing: An effective approach to flexible hybrid electronics

As featured in the LIA TODAY and ICALEO 2017

By Jinguang Cai and Akira Watanabe

The development of miniaturized portable and wearable electronic devices has attracted worldwide research attention, due to their increasing integration with human daily life. Different from traditional electronic devices on “hard” boards, such devices should be soft and flexible. A concept called “flexible hybrid electronics”, which is a hybrid of soft and hard parts, has been proposed to address the fabrication issue of flexible devices.

Fig. 1. A schematic image of a simple flexible hybrid electronic device.

The concept of a flexible hybrid electronic device is illustrated in Fig.1, in which “soft parts”, such as electronic interconnection, energy harvesting and energy storage components, antennae, and even displays, sensors, and communication interfaces, can be prepared via printing methods. “hard parts”, such as processor and memory, can be provided by the commercial small-size silicon components, which are small enough, and can be integrated into the device without influencing the flexibility. However, printing methods have some issues such as limitation of materials, high cost of inks, and complicated post-processing.

Laser direct writing is a non-contact, fast single-step fabrication technique without requirements for masks, post-processing, and complex clean environments. Meanwhile, various kinds of lasers have been rapidly developed with relatively low costs and broad available wavelengths and powers, and widely used in industry for materials welding, cutting, and polishing. Besides, laser processing can be focused into a micrometer-sized or submicrometer-sized area to realize on-demand fabrication of functional micro-patterns, showing the potential to be integrated into current product lines for commercial use. Laser direct writing has been demonstrated to prepare energy harvesting and energy storage components, electronic circuits, sensors, communication interface, and antennae.

Energy harvesting and storage components

Generally, a flexible device employs a thin film battery as the energy storage and supply unit, in combination with a flexible energy harvesting device such as a polymer solar cell. Recently, as a new type of energy storage device, micro-supercapacitors (MSCs), has been developed and recognized as potential power supply units for on-chip micro-devices, because they possess not only the advantages of supercapacitors such as high power density, excellent cycling stability, pollution-free operation, maintenance-free feature, and flexibility, but also simplified packaging processes and compatibility with integrated circuits. Among various materials for supercapacitors, carbon materials possess the properties which can satisfy the requirements of MSCs in the flexible devices, such as high specific surface area, high electrical conductivity, high electrochemical stability, and high mechanical tolerance.

Fig. 2. A carbon micro-supercapacitor prepared by laser direct writing.

Laser-induced carbonization of polymers such as polyimide has been demonstrated to prepare flexible all-solid-state carbon-based MSCs with high performance by laser direct writing on a polyimide (PI) film in air (Fig. 2). In order to suppress the oxidation process and thus, increase the conductivity of the laser-induced carbon structures, the laser direct writing was conducted on PI films in an inert gas such as Ar, resulting in carbon MSCs with improved volumetric energy density and power density. Furthermore, high-conductive Au nanoparticles can be incorporated to construct double-layer carbon/Au composite electrodes with improved conductivity by two-step laser direct writing.

It will be beneficial for practical use if energy harvest and storage units can be integrated into the same device. As a demonstration, TiO2 nanoparticles were deposited on one side of the laser-written interdigitated carbon electrodes by an electrophoretic method, forming carbon/TiO2 composite MSC with photo-rechargeable capability under UV irradiation due to the photovoltaic property of TiO2 nanoparticles. Although the charging voltage is not high enough for practical use currently, it is expected that such a strategy can be developed for practical use by optimizing the photo-absorption materials and the combination.

 

Fig. 3. Schematic images of an integrated photodetector (top) and a rGO/GO/rGO humidity sensor (bottom) prepared by laser direct writing.

 

Photodetectors and humidity sensors

Sensors are one of the most important interfaces with users in IoT (Internet of Things) technology, thence it is very important to develop various types of sensors for flexible devices. Laser direct writing can play an important role in preparing sensors directly on the flexible substrate with high performance and stability. For example, a photodetector for UV light can be fabricated by laser direct writing and deposition of ZnO nanoparticles, and can be integrated into the PI film with a carbon MSC fabricated by laser-induced carbonization, forming an integrated photodetector for practical use (Fig. 3, Top). Besides, a humidity sensor based on an interdigitated reduced graphene oxide (rGO)/graphene oxide (GO)/rGO structure prepared by laser direct writing was also demonstrated with high and fast response, flexibility, and long-term stability, showing the potential to be used in flexible devices (Fig. 3, Bottom).

Fig. 4. Schematic images of an integrated wireless charging and storage device (top) and an NFC tag (bottom) prepared by laser direct writing in combination with electroless Ni plating.

Circuits, communication interface, and antenna

High-conductive metallic circuits with mechanical stability are very important in flexible devices as basic structures, and their preparation should be facile, cost-effective, and easily integrated with other electronic components. Laser direct writing has been demonstrated to pattern metallic Pd on PI films, which can act as catalysts in the electroless Ni plating process, producing high-conductive carbon/Ni composite structures. The carbon/Ni structures exhibited a certain flexibility and excellent anti-scratch performance due to the intimate deposition of Ni layer on carbon surfaces. Such carbon/Ni structures can be used as conductive circuits to construct practical devices.  For example, a wireless charging and storage device can be fabricated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon MSC for energy storage, which can be fast charged by a commercial wireless charger (Fig. 4, Top). In addition, a near-field communication (NFC) antenna was prepared using a carbon/Ni composite coil, and acted as a communication interface with an NFC smartphone for harvesting signals, and an ultra-small commercial IC chip was integrated for data storage (Fig. 4, Bottom). The integrated NFC tag can be used for practical application.

Summary & outlook

While laser direct writing has been demonstrated to be an effective approach to preparing most of the components in flexible devices, such as carbon MSCs as energy storage unit, carbon/TiO2 MSCs for energy harvesting and storage unit, photodetectors and humidity sensors, high-conductive carbon/Ni structures for electronic circuits, and even integrated wireless devices, many efforts are still required to promote the laser direct writing technique applied in the development of flexible hybrid electronics for practical applications in IoT in the future.

 

Jinguang Cai, Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, Sichuan, P. R. China

Akira Watanabe, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

Inventors Synthesize Graphene with Lasers

As featured in the LIA TODAY

By Liliana Caldero

Graphene – it’s the two-dimensional (2D) allotrope of carbon atoms that ignited the imaginations of researchers across the globe. Heralded as a ‘miracle material’, its potential seemed limitless and it was predicted to usher in the next generation of technology. Flexible, stronger than steel, transparent, lightweight, and an amazing conductor of heat and electricity, it was going to revolutionize everything from household electronics to biomedical nanotechnology.

 

THE PROBLEM

Yet, nearly eight years after Dr. Andre Geim and Dr. Konstantin Novoselov earned the Nobel Prize in Physics for first isolating graphene and identifying its properties, graphene has encountered barriers to moving out of the lab and into the marketplace. According to Prof. Dr. Aravinda Kar of the University of Central Florida’s Center for Research and Education in Optics and Lasers (CREOL), one of the most prominent barriers has been finding scalable manufacturing processes that can produce graphene of a quality and quantity ready for consumers and businesses.

Graphene is notoriously difficult to synthesize in large quantities at a consistent quality. Early methods of isolating graphene involved a slow and tedious mechanical exfoliation technique; the researchers would extract a thin layer of graphite from a graphite crystal using regular adhesive tape, continually reducing the graphite sample by sticking the tape together and pulling it apart until only a small, 2D section of carbon atoms with a honeycomb lattice remained. Graphene’s unique characteristics are only present when it is one, two, or three layers of atoms thick – any thicker and it becomes graphite, losing all of the exceptional properties of graphene. The tape exfoliation method, although useful for the lab, was not going to translate very well to an industrialized process.

 

SOLVENT-AIDED EXFOLIATION AND CVD

Two of the more promising and potentially scalable methods of producing graphene are solvent-aided exfoliation and chemical vapor deposition (CVD). In solvent-aided exfoliation, sonication is used to exfoliate graphene crystals which are then further separated in a solvent and later gathered into graphene monolayers.  Scientists at the National University of Singapore have identified a flocculation method that reduces the amount of solvent needed for their exfoliation process, which could yield graphene using far less solvent than was previously needed. Another method experiencing innovation is CVD, which uses thermal chemical reactions to ‘grow’ graphene on substrates of specific materials, typically copper or silicon. Recently, engineers at MIT developed a CVD process for producing graphene filtration membrane sheets at 5 cm per minute. One of the biggest issues with traditional CVD and exfoliation methods is the need to transfer graphene from its fabrication platform to a substrate. Lasers are going to change that.

 

THE MISSING PIECE – LASERS

Lasers may provide yet another avenue to the elusive mass production of graphene, with an eye toward innovating the semiconductor industry. In 2003, Kar, along with Dr. Islam Salama and Dr. Nathaniel Quick, realized that laser direct writing could be used to fabricate carbon-rich nanoribbons on a silicon carbide (SiC) wafer in a nitrogen rich environment. Although these ribbons were too thick to be considered graphene, Kar believed that with a few changes, this process could be reworked to synthesize graphene in situ on a large scale, very quickly. In 2013, Kar and Quick were issued a patent for a Laser Chemical Vapor Deposition (LCVD) method that could be scaled for mass production.

Their method involved a few simple components: a frequency doubled Nd:YAG (green) laser of 532 nm wavelength, methane (CH4) gas, a silicon substrate, and a vacuum chamber.

The 532 nm wavelength corresponds to a photon of energy 2.33 eV, so the energy of two photons is 4.66 eV, just within the range of the C-H bond energy (4.3-4.85 eV) in CH4. Focusing the laser beam to a high intensity can induce two-photon absorption at the focal plane, causing the decomposition of CH4 to release the hydrogen atoms and deposit carbon atoms only on the substrate. The laser heating of the silicon substrate is just low enough to avoid melting the silicon, while providing sufficient thermal and electromagnetic energies to assist the carbon-carbon bonds rearrange into graphene’s trademark hexagonal pattern.

An experimental set-up for multiphoton photolytic laser chemical vapor deposition (LCVD) of graphene from methane precursor. Image courtesy of Dr. Kar and Dr. Quick.

LASER DIRECT WRITING OF GRAPHENE

Kar believes this process could be adapted to add graphene directly onto any substrate. Using laser direct writing, a company could easily draw graphene circuits onto a board. For companies using a hybrid approach, the graphene could be deposited at precise points as interconnects. “You would have all the CAD/CAM capability you could want,” says Quick. Currently, green lasers are available at high output powers, 100 W in continuous wave mode from most large laser manufacturers, so adding this additional step to the manufacturing pipeline for semiconductors would be easy and inexpensive compared to other methods.

At 1.9 cm per second, or 45 inches per minute, this method of graphene production is fast and efficient. This LCVD method offers control over the number of graphene layers, whether one, two, or three are required.  This process also removes the need to manually place graphene onto its intended location, as it is synthesized precisely where it should be. It’s also worth mentioning that this process is conducive to minimal environmental impact, as the unreacted methane and hydrogen byproducts can be captured to be recycled and reused.

 

A LOOK AT THE FUTURE

Picture this: a template is placed over a substrate and a line-shaped laser beam sweeps over it briefly or a beam of large cross-sectional area illuminates the entire template in one shot; when the template is removed, an intricate graphene design has been printed onto a circuit board. That is the future that Kar says is possible, with the right equipment. He suggests that we need manufacturers to develop lasers producing line-shaped beams or large area beams with spatially uniform intensity profile to realize this vision cost-effectively. He emphasizes that a true line-shaped beam produced by a slab laser system or an array of optical fiber laser would be necessary, as shaping the beam synthetically by changing the shape of an aperture would result in too much lost energy. With this technology, graphene could easily be printed onto circuit boards immediately, only where it’s needed, saving in material costs and time.

Nearly 14 years after the excitement first began, researchers are still exploring the potential uses of graphene; from applications in microsupercapacitors to Organic LEDs in flexible displays to ultra-sensitive optical sensors, and even lightweight body armor, the possibilities are still as exciting as ever.

 

Acknowledgements

Prof. Dr. Aravinda Kar, University of Central Florida, CREOL

Dr. Nathaniel Quick, Executive Director of LIA

 

LEARN MORE

Laser Formation of Graphene: United States Patent 8617669. (N. Quick, A. Kar)
http://www.freepatentsonline.com/8617669.html

NUS-led research team develops cost effective technique for mass production of high-quality graphenehttp://news.nus.edu.sg/press-releases/mass-production-graphene-slurry

MIT researchers develop scalable manufacturing process for graphene sheetshttps://newatlas.com/mit-manufacturing-graphene-filtration-membranes/54274/

Air Flow Control for Remote Laser Beam Welding

By Achim Mahrle1,2, Madlen Borkmann 2,1, Eckhard Beyer1,2, Michael Hustedt3, Christian Hennigs3, Alexander Brodeßer3, Jürgen Walter3, Stefan Kaierle3 

1 Fraunhofer IWS Dresden, Germany

2 TU Dresden, Germany

3 Laser Zentrum Hannover e.V. (LZH), Germany

Developers and users of industrial remote laser beam welding applications are often faced with different challenges under the conditions of series production. First, those applications are preferably conducted without any localized gas shielding, and therefore, specific interactions between the laser radiation and the welding fumes are very likely to occur, causing an impairment of the process stability, the reliability and the weld seam quality. Second, welding fume residuals are capable of contaminating workpieces, optical components and other parts of the processing chamber, and they are also able to cause a serious pollution of the cabin atmosphere, because a significant part of the welding fume species is harmful or even toxic and carcinogenic. Each of these points gives a good reason to develop appropriate cabin air flow concepts, but in practice, it is still a challenge to design and optimize the air or gas flow because (i) the conditions of an ideal gas flow regime are uncertain, (ii) different gas flows are able to interact in complex manners, and (iii) it is costly to describe and monitor the gas flow characteristics inside the processing chamber experimentally. Consequently, a complementary combination of experimental and theoretical work has been performed to improve the understanding of inherent issues and relationships.

The experimental work was focused on the characterization of process phenomena and the determination of reliable welding conditions. For that purpose, a particular processing chamber was designed as shown in Figure 01. The interior view of this chamber shows inlet nozzles from a flat-jet type at different positions (1-3) on the right-hand side, as well as a global and a local exhaust air funnel (4-5) on the left-hand side. An additional cross-jet was applied to protect the laser optics (6). In this processing chamber, welding trials with a multi-mode fiber laser at an applied laser power of 3 kW and a welding speed of 2 m/min were performed on mild steel sheets with a thickness of 10 mm. Welds generated without any air flow showed no clear indications of a deep penetration process, and the weld depth was rather low. In contrast, the penetration was more than doubled under the influence of a well-defined gas flow. These findings emphasize the importance of an adapted cabin air flow with respect to the process efficiency. In the case of the investigations performed, local gas flow velocities in the range of 1 – 2 m/s above the weld zone were found to be sufficient to achieve this effect, and it was proven that larger values do not increase the penetration depth further on. In addition, it was found that a particular height of the welding plume is acceptable for stable welding regimes with maximum weld penetration depth. These processing conditions have been considered as a basis for optimization efforts regarding the cabin air flow.

However, with respect to the whole cabin flow, simple rules for an appropriate design are hardly available and optimal parameter configurations are difficult to find by means of empirical approaches because of the high number of control factors and factor combinations. To give an example, the individual air flow out of the applied flat-jet nozzle type is determined by 4 factors, namely the flow rate, the nozzle inclination, the distance to the processing zone and the outflow aperture. For the whole cabin air flow, 19 factors of influence have to be taken into account in total, which means that 219, i.e. more than a half million, factor-level combinations are possible if each factor is tested at only two value levels. Obviously, there is no alternative to Design-of-Experiments (DoE) methods which provide so-called screening designs to identify the most vital factors from a group of 19 factors with a minimal number of 192 runs. Such an analysis was performed by means of a Computational-Fluid-Dynamics (CFD) model to derive detailed information on cause-effect relationships regarding the cabin air flow. Exemplarily, Figure 02 (left) shows a computed air flow field for a particular parameter constellation. Process emissions were modeled as metal vapor inflow rate, and the height of a particular vapor concentration isoline was used as model response for the cabin flow evaluation. As a result of the screening analysis, 6 factors out of 19 were found as the most vital ones. With such a reduced number of factors, it became possible to apply a so-called multi-level Response-Surface-Method (RSM) as a basis for an air flow optimization. With a numerical effort of 157 additional computation runs, the functional dependencies between control factors and outcomes were quantified and described by a cubic regression model. Such a regression model is numerically easy to use and can be applied efficiently to determine optimal parameter configurations by computing the desirability function, plotted in Figure 02 (right) as a measure of the degree of fulfillment of defined optimization criteria, i.e. the limitation of the welding plume height to an acceptable level with minimal overall air or gas consumption.

The study has demonstrated a methodology to optimize the complex cabin air flow under the conditions of remote laser beam welding. However, the specific results cannot be generalized in a simple way as adaptable rules for the design of industrial processing cabins, because the characteristics of particular chambers, the spatial and temporal processing conditions, the type of applied air-flow components and the peculiarities of the specific welding applications always have to be taken into account for a profound analysis.

 

Acknowledgements

The work was performed in close collaboration by the Laser Zentrum Hannover e.V. (LZH) and the Fraunhofer IWS Dresden as part of the publicly funded research project “Steigerung von Prozessstabilität und Schweißnahtqualität beim Remote-Laserschweißen durch gezielte Strömungsführung mittels Anlagenadaption” (RemoStAad) with the reference number IGF 18149 BG. The authors acknowledge the financial and administrative support by the Bundesministerium für Wirtschaft und Energie (BMWi), the Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke e.V.” (AiF), the Forschungskuratorium Maschinenbau e.V. (FKM), and the Forschungsvereinigung Schweißen und verwandte Verfahren e.V. (DVS).

Figure 01: Interior view of the processing chamber with installed components (left) and weld seam cross-sections without (right a) and with air flow control (right b).

 

 

Figure 02: Computed air flow field (left) and desirability plot revealing parameter constellations for an optimized cabin flow (right).

 

Combination of Short and Ultrashort Pulse Laser Processing for Productive Large Scale Structuring of 3D Plastic Mould Steel

 

By: Andreas Brenner, Fraunhofer-Institute for Laser Technology  and Fabian Kurzidim, Volkswagen AG

Increasing demand for surface functionality

Surface functionality is an increasing and crucial factor for the success and acceptance of a product. Through structured surfaces products can gain additional functions. In the automotive industry for example microstructures enable friction reduction in combustion engines or optimize lighting efficiency in LED lights. A glance into a vehicle’s interior is enough to see that detailed structures convey the feeling of exclusivity. For a long time, leather was the dominant look. Now the preference is for fine, more technical structures.

Able to offer virtually unlimited precision, lasers are the right tool for the job. To ensure that productivity matches precision, development is under way on a machine that will be able to efficiently process even large surfaces thanks to a combination of two different pulse types.

Ultrashort pulse lasers have for many years been the tool of choice for processing microstructures. No matter what the material, ultrashort pulse lasers can ablate even in the micrometer range with high precision (cf. picture 1). The only catch is that it takes plenty of time concerning the industrial application.

Up to now, the answer has either been more laser power, faster scanning or splitting the laser beams into multiple beams. A new research and industry consortium is taking a different approach, with partners developing a laser machine that uses an ultrashort pulse laser only for the finest details. The rest of the work is previously done using a productive nanosecond laser.

State of the art versus new approach

The most common way to create surface functionality at 3D parts in automotive interior are replication processes via structured mold tools. Often used manufacturing processes like photochemical etching are limited in precision and in flexibility. The individual stages are repeated over and over, requiring processors with a feeling for finesse since they are not reproducible.

This work can also be done using lasers; especially nanosecond lasers achieve similar throughput rates to etching processes. But they tend to reach their limits when it comes to precision – they begin to melt the material leading to rough contours, especially for intricate structures.

Ultrashort pulse lasers emitting picosecond pulses might not achieve the required throughput rates, but they can perform ultra-precise ablation. Finding a way to combine picosecond and nanosecond pulses is the goal of the eVerest research project, funded by the German Federal Ministry of Education and Research.

Processed experiments

Experimental tests are carried out on hot-working steel blanks 1.2738 using two different laser systems. The ns-machined structures are prepared by the project partner VW. A Lasertec 125 from DMG Mori is used, equipped with a 100 W IPG fiber laser at a wavelength of 1064 nm, a characteristically pulse duration of 400 ns and a repetition rate of 100 kHz. The ps-experiments are carried out in-house at Fraunhofer ILT with a Time-Bandwidth Duetto laser system (integrated in a DML 40 SI laser structuring machine) that provides ultrashort laser pulses with a pulse duration of 10 ps. The laser source offers an average power of 12 W at a wavelength of 1064 nm and an adjustable repetition rate between 100 kHz and 8.2 MHz.

For the underlying experimental setup a structure that is recreated of a carbon texture (cf. picture 2 right) are carried out on a two dimensionally probe. The microstructures contained herein are 60 µm width and 50 µm deep. The two laser sources are combined sequentially. The larger amount and the basis of the structure is ablated by the ns laser process until a depth of 100 µm where the microstructures begin. In the remaining volume until a depth of 150 µm is reached microstructures can be generated by highly precise ultrashort laser pulses (cf. picture 3). So 67 % of the depth will be ablated by ns-laser pulses and 33 % by ps-laser pulses.

Combined process saves time and quality

With the approach followed here to combine ns and ps laser processes their individual weaknesses should be overcome and their individual strength should be exploited instead. The results for combined processing show that regarding processing time the advantages of single ns laser ablation could be used while creating the basic structure with the biggest volume. Regarding quality the hybrid process utilize the benefits of ps laser ablation. Surface roughness is almost identical to a single ps process. Furthermore the most valuable asset is the microstructure quality without melt protrusions equal to a single ps process. This kind of hybrid process enables almost unlimited design textures containing microstructures with high definition (cf. picture 4).

In the end it is a question of what weighs more – productivity or quality. Using a combined process strategy a significant better surface quality without melt protrusions was achieved. However, in comparison to a single ns process the processing time for the hybrid process was 4.5 to 8.8 times. The processing time is currently the biggest compromise to make. “However, it is important to consider that with a combined process strategy the processing time of a single ps process could be more than halved”, underlines Andreas Brenner, researcher at Fraunhofer ILT. Focusing on this fact the promised advantage of the ns process, about saving processing time with a combined process strategy in comparison to a single ps process, could be exploited.

Understanding the process is the key

Although the process itself is being developed with partners at Volkswagen, its areas of application extend far beyond the automotive industry. No matter whether they are for embossing rollers for the printing industry or large bearings for the rotor shafts of wind turbines, functional surfaces are in demand in any number of sectors.

These issues are also the focus of this year’s AKL- International Laser Technology Congress, which will be held on Mai 02 until 04, 2018 in Aachen. This will be the twelfth year for the event that brings together specialists in laser development, process technology and the industry at large to discuss about topics in macro and micro processing, laser source developing and additive manufacturing.

 

 

 

 

 

2017 Laser Market Review

By: David Belforte, Industrial Laser Solutions

In last year’s 2016 report, I opened with comments about the troubling times, political, cultural and economic, we lived in and then expounded on the industrial laser industry seeming to defy bad news with its own good economic news. Well, I could have copied that report, changed a few numbers, and saved a lot of time and effort in compiling this year’s. I won’t, however, because there are some changes, both good and bad.

First the bad—politically, socially, and culturally things got worse. In the United States, the socio-economic gap widened and the country is more contentiously divided. Around the world, there continues to be terrorism, secular war and other strife. The fractious Brexit problem, still unresolved, leaves the economies of several countries in limbo. Furthermore, as the year ended, one stalwart, Germany, lost its economic luster, and as the New York Times proclaimed, this country “plunged into political crisis.”

Despite this, most countries’ economies improved in 2017 and the average GNP slightly increased. As a result, manufacturing, the backbone of these economies, improved.

In response, the industrial laser market experienced another growth year led by exuberant fiber and excimer laser revenues. Overall total market revenues tallied a whopping 26% increase, a level not seen since the early days of this almost-50-year-old industry sector.

I’m going to pause to explain how the market numbers are generated. Industrial Laser Solutions partner, Strategies Unlimited, compiles and prepares annual revenue data for us, primarily from public companies representing several of the largest industrial laser manufacturers, including IPG Photonics, Coherent, Inc., along with data from the largest company, privately held TRUMPF. Because of the timing of these reports, revenues for the final quarter of the calendar year are taken from the guidance offered in their reports. Consequently, adjustments made in prior year revenues may be made if fourth-quarter results published early in the next year are outside the limits of the guidance advisories. This happened last year in the case of industry leaders IPG Photonics and Coherent, Inc.

Source: Strategies Unlimited/ILS

Okay, let’s look at the numbers. After some adjustments in revenues, 2016 turned out to be a good year for industrial laser sales led by outstanding fiber laser growth and the beginning of deliveries of high-power excimer lasers for applications in manufacturing mobile phone displays. This trend continued in 2017 with two companies, IPG Photonics and Coherent, Inc., racking up outstanding first-half revenue growth. Processing of Micromaterials gained 24%, most of it from a 56% increase in revenues from the face plate processing application. High-power processing of Macro materials shot up by 34% as sheet-metal-cutting growth of 30% was led by the market in China.

Most significantly, fiber laser revenues, up 34%, represented 47% of total laser revenues, further eroding CO2 lasers’ market share to 13% of the total as CO2 revenues in 2017 declined by 14%. Solid-state lasers, which in prior years had reducing market shares, experienced a rebirth as high-power disk laser revenues propelled a strong 26% increase, thanks to sales into the metal-cutting and welding markets. Making a notable contribution to overall laser revenue growth was the burgeoning markets for high-power diode and excimer lasers in the Other category.

Application markets

Marking (including engraving) represents about 15% of all industrial laser revenues. An increase of 7% in fiber laser revenue continues to eat away solid-state lasers’ share as an unrelenting reduction in unit selling prices drove market growth, specifically in China. CO2 lasers for engraving applications remained a positive area of growth for that laser.

Source: Strategies Unlimited/ILS

In the Micro Materials sector, high-value excimer laser sales for mobile phone and hand-held display applications showed a 56% growth as system deliveries peaked in 2017. Lasers with output power <500W found a growing market in Additive Manufacturing (a 30% gain) and Non-Metal Processing (up 9%), and Fine Metal Processing (fine blanking) showed two long-term growth opportunities.

Among the Macro (=> 1 kW) applications, Welding/Brazing tallied the strongest growth at 50% as fiber for welding and high-power diodes for brazing increased industry acceptance. Increasing demand for sheet-metal-cutting laser systems, primarily in China and other Asian countries, boosted growth from a modest single-digit growth pattern to a recent-year high of 29%. And a fast-growing market for production-rated Additive Manufacturing systems caused a spurt in high-power fiber, diode and CO2 lasers.

The Future

Looking ahead to 2018, global companies in manufacturing project a repeat of 2017, all things being equal. Under these circumstances, industrial laser manufacturers are also bullish about market strength in the coming year, expecting a slightly diminished first-half growth, compared to 2017’s ebullient experience.

Expect revenue growth in 2018 to return to a modest, but industry-acceptable, single-digit level of 7%. Two factors drive our expectations: the 2017 spike in laser cutting in Asia will cool down and return to a more-normal 5% growth pattern, and second-half delivery schedules for high-priced excimer laser annealing systems for display production will start to wind down.

We expect Marking, Micro and Macro laser revenues will experience single-digit growth, which has consistently been the trend in these markets. Lest readers see this as an overly cautious forecast, remember a simple marketing maxim — before you can have growth, you must match prior years’ sales. For industrial lasers, the target is the superheated $4.3 billion market of 2017.

One cautionary note — the recession of 2008/9 will be 102 months old in January, and wise economists cite this as a strong aberration according to CNBC[1]. So a word of caution, typical economic cycles are 58 months, so it wouldn’t be remiss to Google recession forecasts periodically. Those who were surprised by the start of the Great Recession of 2008/9 can speak to this suggestion.

David Belforte is Editor-in-Chief of Industrial Laser Solutions.

References:
1.) Mobasheri, A. (2017, June 27). Op-Ed: A history of economic cycles going back to the 1850s suggests a recession is near. Retrieved from https://www.cnbc.com/2017/06/27/op-ed-a-history-of-economic-cycles-suggests-a-recession-is-near.html